首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19084篇
  免费   1745篇
  国内免费   883篇
  21712篇
  2024年   72篇
  2023年   555篇
  2022年   778篇
  2021年   1048篇
  2020年   856篇
  2019年   1013篇
  2018年   917篇
  2017年   698篇
  2016年   761篇
  2015年   917篇
  2014年   1245篇
  2013年   1615篇
  2012年   887篇
  2011年   1032篇
  2010年   742篇
  2009年   892篇
  2008年   886篇
  2007年   826篇
  2006年   765篇
  2005年   714篇
  2004年   662篇
  2003年   482篇
  2002年   465篇
  2001年   370篇
  2000年   280篇
  1999年   257篇
  1998年   255篇
  1997年   234篇
  1996年   183篇
  1995年   154篇
  1994年   199篇
  1993年   139篇
  1992年   136篇
  1991年   86篇
  1990年   96篇
  1989年   61篇
  1988年   68篇
  1987年   46篇
  1986年   44篇
  1985年   38篇
  1984年   39篇
  1983年   39篇
  1982年   35篇
  1981年   34篇
  1980年   17篇
  1979年   19篇
  1978年   13篇
  1976年   9篇
  1975年   9篇
  1974年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
181.
Previously, tau protein kinase I/glycogen synthase kinase-3/kinase FA(TPKI/GSK-3/FA) was identified as a brain microtubule-associated tau kinase possibly involved in the Alzheimer disease-like phosphorylation of tau. In this report, we find that the TPKI/GSK-3/FA can be stimulated to phosphorylate brain tau up to 8.5 mol of phosphates per mol of protein by heparin, a polyanion compound. Tryptic digestion of32P-labeled tau followed by high-performance liquid chromatography and high-voltage electrophoresis/thin-layer chromatography reveals 12 phosphopeptides. Phosphoamino acid analysis together with sequential manual Edman degradation and peptide sequence analysis further reveals that TPKI/GSK-3//FA after heparin potentiation phosphorylates tau on sites of Ser199, Thr231, Ser235, Ser262, Ser396, and Ser400, which are potential sites abnormally phosphorylated in Alzheimer tau and potent sites responsible for reducing microtubule binding possibly involved in neuronal degeneration. The results provide initial evidence that TPKI/GSK-3/FA after heparin potentiation may represent one of the most potent systems possibly involved in the abnormal phosphorylation of PHF-tau and neuronal degeneration in Alzheimer disease brains.Abbreviations FA the activating factor of type 1 protein phosphatase - GSK-3 glycogen synthase kinase-3 - TPKI tau protein kinase I - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis - PHF paired helical filaments - HPLC high-performance liquid chromatography  相似文献   
182.
Transglutaminase catalyzes the intermolecular cross-linking of peptides between Gln and Lys residues, forming an -(-glutamyl) lysine bond. Amyloid -peptide, a major constituent of the deposits in Alzheimer disease, contains Lys16, Lys28, and Gln15 which may act as substrates of transglutaminase. Transglutaminase treatment of amyloid -peptide (1–28) and amyloid -peptide (1–40) yielded cross-linked oligomers. Transglutaminase-treated A retarded neurite extension of PC12 cells, and rat cultured neurons of hippocampus and septum, brain areas severely affected by Alzheimer disease, and subsequently caused cell death, whereas the transglutaminase-untreated counterparts did not show harmful effects. The transglutaminase-catalyzed oligomers of amyloid -peptide and their neurotoxicity may be involved in two characteristics in Alzheimer disease, neuronal degeneration and formation of the insoluble deposits.Abbreviations: AD – Alzheimer disease, A – amyloid -peptide, DMEM – Dulbecco's modified Eagle's medium, DMEM/F–12–1:1 mixture of DMEM and Ham's F–12 medium, FCS – fetal calf serum, HS – horse serum, PAGE – polyacrylamide gel electrophoresis, MTT – 3-(4,5-dimethylthiazol–2-yl)–2,5-diphenyltetrazolium bromide, NGF – nerve growth factor, TGase – transglutaminase.  相似文献   
183.
Summary To study the influence of phosphorylation and oxidation on the repeat domains of human Tau protein, we faced the challenge to selectively dimerize two cysteine-containing peptides in the presence of a nearby phosphate group. To this end, we were able to demonstrate the utility of a selective dimerization approach by forming disulfide bonds in unprotected phosphopeptides and extended the methodology to unprotected glycopeptides. Activation of one cysteine of a peptide chain with 2,2-dithiodipyridine and coupling this thiopyridyl-peptide to another peptide chain, containing an unprotected cysteine residue, yielded the mixed dimers in high purities and reasonable yields. Phosphate or sugar side chains on either peptide component remained unaffected during the activation and dimerization processes. While for mixed dimers the activated peptides were isolated by chromatography, homodimers were obtained by a simple one-pot reaction after 1 h. We demonstrate that cysteines can be dimerized in unprotected phosphopeptides and glycopeptides, without any side reactions affecting these posttranslational modifications.Abbreviations DCM dichloromethane - DMF N,N-dimethylformamide - DTP 2,2-dithiodipyridine - Fmoc 9-fluorenylmethyloxycarbonyl - HPLC high-performance liquid chromatography - MALDI matrix-assisted laser desorption/ionization - MS mass spectrometry - NFT neurofibrillary tangles - PHF paired helical filaments - PKC protein kinase C - RP reversed phase - human Tau protein - TFA trifluoroacetic acid Parts of this paper were presented at the 24th European Peptide Symposium in Edinburgh, Scotland, U.K., September 8–13, 1996.  相似文献   
184.
185.
The long anticipated ‘genetic revolution’ in neuropsychiatry has yet to have an impact on the practice of clinical medicine. Excitement in the 1980s over major genetic breakthroughs in schizophrenia and manic depression, for example, has been replaced in the late 1990s by the sobering realization that most common neuropsychiatric disorders are multifactorial. Despite considerable effort and resources, no ‘causative’ genetic variation has been identified that plays a definitive major role in any common neuropsychiatric disorder.  相似文献   
186.
载脂蛋白E(ApoE)与迟发的家族性及孤发性阿尔茨海默(Alzheimer)病密切相关. 氯喹慢性中毒可诱发某些肌病理改变, 出现β淀粉样蛋白(βAP)与tau蛋白等的沉积, 与Alzheimer脑中见到的病理改变类似. 为分析这一改变的机制, 用逆转录结合多聚酶链反应技术(RT-PCR)对氯喹处理的大鼠肌肉中ApoE表达的改变进行了研究. 在PCR定量中采用了一种稳定表达的内源性甘油醛-3-磷酸脱氢酶mRNA作为内部参照. PCR扩增在很宽的循环数范围内成线性, 且靶mRNA与参照mRNA的扩增效率相当. 氯喹处理后大鼠肌肉中ApoE mRNA的表达从第6周开始增加, 第8周后超过对照组的20多倍. 结果提示, ApoE在氯喹慢性中毒所致的大鼠肌病理改变中发挥某些作用.  相似文献   
187.
Abstract: Alzheimer's disease (AD) is widely held to be a disorder associated with oxidative stress due, in part, to the membrane action of amyloid β-peptide (Aβ). Aβ-associated free radicals cause lipid peroxidation, a major product of which is 4-hydroxy-2- trans -nonenal (HNE). We determined whether HNE would alter the conformation of synaptosomal membrane proteins, which might be related to the known neurotoxicity of Aβ and HNE. Electron paramagnetic resonance spectroscopy, using a protein-specific spin label, MAL-6(2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl), was used to probe conformational changes in gerbil cortical synaptosomal membrane proteins, and a lipid-specific stearic acid label, 5-nitroxide stearate, was used to probe for HNE-induced alterations in the fluidity of the bilayer domain of these membranes. Synaptosomal membranes, incubated with low concentrations of HNE, exhibited changes in protein conformation and bilayer order and motion (fluidity). The changes in protein conformation were found to be concentration- and time-dependent. Significant protein conformational changes were observed at physiologically relevant concentrations of 1–10 µ M HNE, reminiscent of similar changes in synaptosomal membrane proteins from senile plaque- and Aβ-rich AD hippocampal and inferior parietal brain regions. HNE-induced modifications in the physical state of gerbil synaptosomal membrane proteins were prevented completely by using excess glutathione ethyl ester, known to protect neurons from HNE-caused neurotoxicity. Membrane fluidity was found to increase at higher concentrations of HNE (50 µ M ). The results obtained are discussed with relevance to the hypothesis of Aβ-induced free radical-mediated lipid peroxidation, leading to subsequent HNE-induced alterations in the structure and function of key membrane proteins with consequent neurotoxicity in AD brain.  相似文献   
188.
Abstract: l -DOPA is toxic to catecholamine neurons in culture, but the toxicity is reduced by exposure to astrocytes. We tested the effect of l -DOPA on dopamine neurons using postnatal ventral midbrain neuron/cortical astrocyte cocultures in serum-free, glia-conditioned medium. l -DOPA (50 µ M ) protected against dopamine neuronal cell death and increased the number and branching of dopamine processes. In contrast to embryonically derived glia-free cultures, where l -DOPA is toxic, postnatal midbrain cultures did not show toxicity at 200 µ M l -DOPA. The stereoisomer d -DOPA (50–400 µ M ) was not neurotrophic. The aromatic amino acid decarboxylase inhibitor carbidopa (25 µ M ) did not block the neurotrophic effect. These data suggest that the neurotrophic effect of l -DOPA is stereospecific but independent of the production of dopamine. However, l -DOPA increased the level of glutathione. Inhibition of glutathione peroxidase by l -buthionine sulfoximine (3 µ M for 24 h) blocked the neurotrophic action of L-DOPA. N -Acetyl- l -cysteine (250 µ M for 48 h), which promotes glutathione synthesis, had a neurotrophic effect similar to that of l -DOPA. These data suggest that the neurotrophic effect of l -DOPA may be mediated, at least in part, by elevation of glutathione content.  相似文献   
189.
Abstract: Amyloid β-peptide (Aβ) is deposited as insoluble fibrils in the brain parenchyma and cerebral blood vessels in Alzheimer's disease (AD). In addition to neuronal degeneration, cerebral vascular alterations indicative of damage to vascular endothelial cells and disruption of the blood-brain barrier occur in AD. Here we report that Aβ25-35 can impair regulatory functions of endothelial cells (ECs) from porcine pulmonary artery and induce their death. Subtoxic exposures to Aβ25-35 induced albumin transfer across EC monolayers and impaired glucose transport into ECs. Cell death induced by Aβ25-35 was of an apoptotic form, characterized by DNA condensation and fragmentation, and prevented by inhibitors of macromolecular synthesis and endonucleases. The effects of Aβ25-35 were specific because Aβ1-40 also induced apoptosis in ECs with the apoptotic cells localized to the microenvironment of Aβ1-40 aggregates and because astrocytes did not undergo similar changes after exposure to Aβ25-35. Damage and death of ECs induced by Aβ25-35 were attenuated by antioxidants, a calcium channel blocker, and a chelator of intracellular calcium, indicating the involvement of free radicals and dysregulation of calcium homeostasis. The data show that Aβ induces increased permeability of EC monolayers to macromolecules, impairs glucose transport, and induces apoptosis. If similar mechanisms are operative in vivo, then Aβ and other amyloidogenic peptides may be directly involved in vascular EC damage documented in AD and other disorders that involve vascular amyloid accumulation.  相似文献   
190.
Abstract: It has been previously reported that Alzheimer's amyloid β protein (Aβ) induces reactive astrocytosis in culture. In the present study, we found that Aβ potently inhibits cellular redox activity of cultured astrocytes, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction assay. The following comparative studies revealed several differences between these two actions of Aβ on astrocytes. First, Aβ-induced reactive morphological change was suppressed by the presence of serum or thrombin, and Aβ inhibition of cellular redox activity was observed in either the presence or the absence of serum. Second, micromolar concentrations (10 µ M or more) were required for Aβ to induce reactive astrocytosis, whereas nanomolar concentrations (0.1–100 n M ) were sufficient to inhibit cellular redox activity. Third, the effect of micromolar Aβ was virtually irreversible, but nanomolar Aβ-induced inhibition of cellular redox activity was reversed by washing out Aβ. Furthermore, as it has been reported that Aβ neurotoxicity is mediated by reactive oxygen species, we also examined if similar mechanisms are involved in astrocytic response to Aβ. However, neither Aβ-induced morphological change nor inhibition of redox activity was blocked by antioxidants, suggesting that these effects are not caused by oxidative stress.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号