首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2242篇
  免费   291篇
  国内免费   72篇
  2024年   3篇
  2023年   36篇
  2022年   39篇
  2021年   84篇
  2020年   86篇
  2019年   108篇
  2018年   77篇
  2017年   76篇
  2016年   114篇
  2015年   136篇
  2014年   127篇
  2013年   116篇
  2012年   121篇
  2011年   114篇
  2010年   92篇
  2009年   120篇
  2008年   104篇
  2007年   135篇
  2006年   92篇
  2005年   81篇
  2004年   81篇
  2003年   62篇
  2002年   76篇
  2001年   61篇
  2000年   67篇
  1999年   50篇
  1998年   50篇
  1997年   43篇
  1996年   43篇
  1995年   38篇
  1994年   33篇
  1993年   22篇
  1992年   28篇
  1991年   22篇
  1990年   8篇
  1989年   12篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   5篇
  1984年   7篇
  1983年   2篇
  1982年   7篇
  1981年   3篇
  1976年   1篇
排序方式: 共有2605条查询结果,搜索用时 131 毫秒
81.
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given  相似文献   
82.
Summary

Employment of Markowitz's Modern Portfolio Theory, economic models designed to predict the effect of variance and covariance on optimal investment allocation, may explain a wide variety of anomalies in reproductive biology. Natural selection appears to favor genetic diversity among offspring to a greater extent than is predicted by current theory. Consideration of the possible increase in fitness by reducing the covariance among offspring may help explain a variety of phenomena from multiple mating to the evolution of recombination (i.e., overcoming “the cost of meiosis”). Modern Portfolio Theory also make novel predictions as to when hermaphrodites should prefer the male vs. female role, i.e., engage in egg- vs. sperm-trading. It predicts that the sexual role with the lower variance in reproductive success will be preferred in hermaphrodites. This contradicts Bateman's principle that the male role is usually preferred due to energetic considerations but is consistent with Gillespie's principle. The available data suggest that mating hermaphrodites are risk-averse; gamete-trading whether of eggs or sperm is a strategy to reduce risk. In addition to overall variance, the skew of the distribution can be used to predict the mating systems of hermaphrodites and thus clarify the factors that are responsible for observed patterns of sex allocation and sexual conflict. The reduction of covariance among offspring may also help resolve “Williams' paradox”; that the observed distribution of dieoecy vs. simultaneous hermaphroditism in the Animal Kingdom cannot be explained by the prevailing models of the evolution of hermaphroditism.  相似文献   
83.
84.
Constant environments are often assumed to favor the evolution of specialization whereas exposure to changing environments may favor the evolution of generalists. Here we explored the phenotypic and molecular changes associated with evolving an RNA virus in constant versus fluctuating temperature environments. We used vesicular stomatitis virus (VSV) to determine whether selection at a constant temperature entails a performance trade‐off at an unselected temperature, whether virus populations evolve to be generalists when selected in deterministically changing temperature environments, and whether selection under stochastically changing temperatures prevents evolved generalization, such as by constraining the ability for viruses to adaptively improve. We observed that all VSV lineages evolved at constant temperatures showed fitness gains in their selected temperature with little evidence for trade‐offs in performance in the unselected environment. Evolution in deterministically and stochastically changing temperatures led to populations with the highest and lowest overall fitness gains, respectively. Sequence analysis revealed little evidence for convergent molecular evolution among lineages within the same treatment. Across all temperature treatments, the majority of genome substitutions occurred in the G (glycoprotein) gene, suggesting that this locus for the cell‐binding protein plays a key role in dictating VSV performance under changing temperature.  相似文献   
85.
Constraints on life‐history traits, with their close links to fitness, are widely invoked as limits to niche expansion at most organizational levels. Theoretically, such constraints can maintain individual specialization by preventing adaptation to all niches available, but empirical evidence of them remains elusive for natural populations. This problem may be compounded by a tendency to seek constraints involving multiple traits, neglecting their added potential to manifest in trait expression across environments (i.e., within reaction norms). By replicating genotypes of a colonial marine invertebrate across successional stages in its local community, and taking a holistic approach to the analysis of ensuing reaction norms for fitness, we show the potential for individual specialization to be maintained by genetic constraints associated with these norms, which limit the potential for fitness at one successional stage to improve without loss of fitness at others. Our study provides new insight into the evolutionary maintenance of individual specialization in natural populations and reinforces the importance of reaction norms for studying this phenomenon.  相似文献   
86.
The functional synthesis uses experimental methods from molecular biology, biochemistry and structural biology to decompose evolutionarily important mutations into their more proximal mechanistic determinants. However these methods are technically challenging and expensive. Noting strong formal parallels between R.A. Fisher's geometric model of adaptation and a recent model for the phenotypic basis of protein evolution, we sought to use the former to make inferences into the latter using data on pairwise fitness epistasis between mutations. We present an analytic framework for classifying pairs of mutations with respect to similarity of underlying mechanism on this basis, and also show that these data can yield an estimate of the number of mutationally labile phenotypes underlying fitness effects. We use computer simulations to explore the robustness of our approach to violations of analytic assumptions and analyze several recently published datasets. This work provides a theoretical complement to the functional synthesis as well as a novel test of Fisher's geometric model.  相似文献   
87.
Seed germination and innate immunity both have significant effects on plant life spans because they control the plant's entry into the ecosystem and provide defenses against various external stresses, respectively. Much ecological evidence has shown that seeds with high vigor are generally more tolerant of various environmental stimuli in the field than those with low vigor. However, there is little genetic evidence linking germination and immunity in plants. Here, we show that the rice lectin receptor‐like kinase OslecRK contributes to both seed germination and plant innate immunity. We demonstrate that knocking down the OslecRK gene depresses the expression of α–amylase genes, reducing seed viability and thereby decreasing the rate of seed germination. Moreover, it also inhibits the expression of defense genes, and so reduces the resistance of rice plants to fungal and bacterial pathogens as well as herbivorous insects. Yeast two‐hybrid and co‐immunoprecipitation experiments revealed that OslecRK interacts with an actin‐depolymerizing factor (ADF) in vivo via its kinase domain. Moreover, the rice adf mutant exhibited a reduced seed germination rate due to the suppression of α–amylase gene expression. This mutant also exhibited depressed immune responses and reduced resistance to biotic stresses. Our results thus provide direct genetic evidence for a common physiological pathway connecting germination and immunity in plants. They also partially explain the common observation that high‐vigor seeds often perform well in the field. The dual effects of OslecRK may be indicative of progressive adaptive evolution in rice.  相似文献   
88.
Populations forced through bottlenecks typically lose genetic variation and exhibit inbreeding depression. ‘Genetic rescue’ techniques that introduce individuals from outbred populations can be highly effective in reversing the deleterious effects of inbreeding, but have limited application for the majority of endangered species, which survive only in a few bottlenecked populations. We tested the effectiveness of using highly inbred populations as donors to rescue two isolated and bottlenecked populations of the South Island robin (Petroica australis). Reciprocal translocations significantly increased heterozygosity and allelic diversity. Increased genetic diversity was accompanied by increased juvenile survival and recruitment, sperm quality, and immunocompetence of hybrid individuals (crosses between the two populations) compared with inbred control individuals (crosses within each population). Our results confirm that the implementation of ‘genetic rescue’ using bottlenecked populations as donors provides a way of preserving endangered species and restoring their viability when outbred donor populations no longer exist.  相似文献   
89.
Quantifying the fitness cost that parasites impose on wild hosts is a challenging task, because the epidemiological history of field-sampled hosts is often unknown. In this study, we used an internal marker of the parasite pressure on individual hosts to evaluate the costs of parasitism with respect to host body condition, size increase and reproductive potential of field-collected animals for which we also determined individual age. In our investigated system, the European eel Anguilla anguilla and the parasitic invader Anguillicoloides crassus, high virulence and severe impacts are expected because the host lacks an adaptive immune response. We demonstrated a nonlinear relationship between the severity of damage to the affected organ (i.e. the swimbladder, our internal marker) and parasite abundance and biomass, thus showing that the use of classical epidemiological parameters was not relevant here. Surprisingly, we found that the most severely affected eels (with damaged swimbladder) had greater body length and mass (+11% and +41%, respectively), than unaffected eels of same age. We discuss mechanisms that could explain this finding and other counterintuitive results in this host–parasite system, and highlight the likely importance of host panmixia in generating great inter-individual variability in growth potential and infection risk. Under that scenario, the most active foragers would not only have the greatest size increase, but also the highest probability of becoming repeatedly infected—via trophic parasite transmission—during their continental life.  相似文献   
90.
Polymorphic genes involved in the conserved molecular signalling of circadian and circannual clocks may play important roles in governing the timing of breeding and dispersal and thereby affect fitness in vertebrates. However, relatively few studies have explored associations between phenological candidate genes and behaviour, and these are somewhat biased towards particular taxonomic groups such as passerine birds and salmonid fish. Consequently, we assayed microsatellite polymorphisms within the exonic and 3′ untranslated regions of the regulatory genes CLOCK, NPAS2, ADCYAP1 and CREB1 in the common buzzard (Buteo buteo), a polymorphic raptor species with three plumage morphs that differ in key life history traits including lifetime reproductive success. In contrast to studies of passerines, CLOCK poly‐glutamine (poly‐Q) was found to be monomorphic in 976 common buzzard nestlings as well as in three other Buteo species. Moreover, none of the candidate genes were significantly associated with fledging dates, although intermediately melanized females were found to lay earlier on average than light or dark morph individuals, and their offspring carried longer ADCYAP1 alleles. In contrast, all three candidate genes explained significant variation in one or more measures of juvenile buzzard dispersal (resighting probability, timing of dispersal and distance dispersed). Our findings contribute towards a broader body of work on the adaptive significance of CLOCK polymorphism, while also building upon previous studies that have documented links between ADCYAP1 variability and the timing of migration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号