首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1743篇
  免费   214篇
  国内免费   42篇
  2024年   3篇
  2023年   36篇
  2022年   56篇
  2021年   92篇
  2020年   103篇
  2019年   147篇
  2018年   87篇
  2017年   67篇
  2016年   65篇
  2015年   79篇
  2014年   86篇
  2013年   118篇
  2012年   72篇
  2011年   70篇
  2010年   60篇
  2009年   49篇
  2008年   63篇
  2007年   62篇
  2006年   51篇
  2005年   44篇
  2004年   51篇
  2003年   59篇
  2002年   31篇
  2001年   28篇
  2000年   35篇
  1999年   30篇
  1998年   39篇
  1997年   29篇
  1996年   37篇
  1995年   21篇
  1994年   20篇
  1993年   22篇
  1992年   39篇
  1991年   25篇
  1990年   22篇
  1989年   13篇
  1988年   16篇
  1987年   11篇
  1986年   12篇
  1985年   14篇
  1984年   8篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
排序方式: 共有1999条查询结果,搜索用时 15 毫秒
71.
目的探讨成人心源性间充质样细胞 (CDMCs)的分子表型及向心脏谱系的分化潜能。方法实验分为:不同培养时间CDMCs (第3、5、7代),并以脐带间充质干细胞 (UCMSCs)为对照。分析各细胞分子表型并向心脏谱系诱导分化。显微镜观察细胞形态;计算生长倍增时间并绘制细胞生长曲线;流式细胞术分析表面标志抗原表达;实时定量PCR和Western blot分别测干细胞多能分子及组织特异性分子mRNA和蛋白表达。结果采用重复测量资料方差分析、单因素方差分析和配对t检验。结果 CDMCs具有UCMSCs形态特征与增殖能力,体外培养1 ~ 7 d,与UCMSCs比较,P3、5、7代CDMCs增殖能力差异无统计学意义 (P> 0.05)。与UCMSCs相比,不同培养时间CDMCs表面标志抗原 (CD90)表达 (冻存前:97.13%±2.00%比59.87%±34.14%、38.83%±11.04%、34.77±14.78%;冻存后:99.83%±0.17%比56.00%±19.47%、47.48±11.88%、41.15±8.68%)降低(P< 0.05)。与UCMSCs相比,不同培养时间CDMCs中Rex1 (0.00±0.00比0.68±0.50、0.29±0.17、0.38±0.50)、Oct3/4 (1.00±0.02比5.28±0.78、3.88±0.95、3.63±0.34)、Nanog(1.00±0.16比7.57±4.69、5.40±3.58、5.34±0.76)以及心脏特异转录因子Nkx2.5 (1.00±0.12比30.60±22.43、19.69±9.65、8.82±4.94)、Gata4 (1.00±0.85比60467±25266、44350±25800、35067±23113)表达均增高,差异有统计学意义 (P均< 0.05)。与诱导前比较,向心肌诱导分化15 d后,不同培养时间CDMCs中cTnT蛋白表达水平 (0.40±0.13比0.98±0.16、0.38±0.18 比0.69±0.15、0.17±0.11比0.70±0.17)增高 (P< 0.05)。结论 CDMCs不仅具备部分干细胞和间充质细胞表型,还具有心脏组织特异性。其具备心脏谱系分化潜能,心肌细胞分化能力可能优于UCMSCs。  相似文献   
72.
This contribution presents a novel constitutive model in order to simulate an orthotropic rate-dependent behaviour of the passive myocardium at finite strains. The motivation for the consideration of orthotropic viscous effects in a constitutive level lies in the disagreement between theoretical predictions and experimentally observed results. In view of experimental observations, the material is deemed as nearly incompressible, hyperelastic, orthotropic and viscous. The viscoelastic response is formulated by means of a rheological model consisting of a spring coupled with a Maxwell element in parallel. In this context, the isochoric free energy function is decomposed into elastic equilibrium and viscous non-equilibrium parts. The baseline elastic response is modelled by the orthotropic model of Holzapfel and Ogden [Holzapfel GA, Ogden RW. 2009. Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Roy Soc A Math Phys Eng Sci. 367:3445–3475]. The essential aspect of the proposed model is the account of distinct relaxation mechanisms for each orientation direction. To this end, the non-equilibrium response of the free energy function is constructed in the logarithmic strain space and additively decomposed into three anisotropic parts, denoting fibre, sheet and normal directions each accompanied by a distinct dissipation potential governing the evolution of viscous strains associated with each orientation direction. The evolution equations governing the viscous flow have an energy-activated nonlinear form. The energy storage in the Maxwell branches has a quadratic form leading to a linear stress–strain response in the logarithmic strain space. On the numerical side, the algorithmic aspects suitable for the implicit finite element method are discussed in a Lagrangian setting. The model shows excellent agreement compared to experimental data obtained from the literature. Furthermore, the finite element simulations of a heart cycle carried out with the proposed model show significant deviations in the strain field relative to the elastic solution.  相似文献   
73.
Abstract

This paper describes a systematic investigation on the hemodynamic environment in a patient-specific AAA with tortuous common iliac artery(CIA) and external iliac artery (EIA). 3D reconstructions from CT scans and subsequent computational simulation are carried out. It is found out that the Newtonian and non-Newtonian models have very similar flow field and WSS distribution. More importantly, it is revealed that the torturous CIA maintained its helical flow. It is concluded that the assumption of Newtonian blood is adequate in capturing the intra-aneurysmal hemodynamics. Moreover, it is speculated that the physiological spiral flow protects the twisted CIA from the thrombosis formation.  相似文献   
74.
Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models.  相似文献   
75.
The characterization of the bileaflet mechanical heart valves (BMHVs) hinge microflow fields is a crucial step in heart valve engineering. Earlier in vitro studies of BMHV hinge flow at the aorta position in idealized straight pipes have shown that the aortic sinus shapes and sizes may have a direct impact on hinge microflow fields. In this paper, we used a numerical study to look at how different aortic sinus shapes, the downstream aortic arch geometry, and the location of the hinge recess can influence the flow fields in the hinge regions. Two geometric models for sinus were investigated: a simplified axisymmetric sinus and an idealized three-sinus aortic root model, with two different downstream geometries: a straight pipe and a simplified curved aortic arch. The flow fields of a 29-mm St Jude Medical BMHV with its four hinges were investigated. The simulations were performed throughout the entire cardiac cycle. At peak systole, recirculating flows were observed in curved downsteam aortic arch unlike in straight downstream pipe. Highly complex three-dimensional leakage flow through the hinge gap was observed in the simulation results during early diastole with the highest velocity at 4.7 m/s, whose intensity decreased toward late diastole. Also, elevated wall shear stresses were observed in the ventricular regions of the hinge recess with the highest recorded at 1.65 kPa. Different flow patterns were observed between the hinge regions in straight pipe and curved aortic arch models. We compared the four hinge regions at peak systole in an aortic arch downstream model and found that each individual hinge did not vary much in terms of the leakage flow rate through the valves.  相似文献   
76.
Sympathetic nervous system regulation by the α1-adrenergic receptor (AR) subtypes (α1A, α1B, α1D) is complex, whereby chronic activity can be either detrimental or protective for both heart and brain function. This review will summarize the evidence that this dual regulation can be mediated through the different α1-AR subtypes in the context of cardiac hypertrophy, heart failure, apoptosis, ischemic preconditioning, neurogenesis, locomotion, neurodegeneration, cognition, neuroplasticity, depression, anxiety, epilepsy, and mental illness.  相似文献   
77.
Abstract

Cardiac glycoside binding to rat heart membrane preparations was measured by rapid filtration technique. The binding data were analyzed using quantitative computer analysis. The experimental results using [3H]-ouabain as the labeled ligand were consistent with a model in which cardiac glycoside specific binding occurs at two independent classes of sites. The high affinity sites were characterized by a dissociation constants of 40 nM, 50 nM, and 61 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 1.3 pmoles/mg protein. The lower affinity sites for ouabain were characterized by dissociation constants of 2.3 µM, 67 nM and 71 nM for ouabain, digoxin and digitoxin, respectively, with a binding capacity of 3 pmoles/mg protein. Potassium ions inhibit [3H]-ouabain binding in a dose dependent manner with an IC50 of 500 µM. Quantitative computer modelling indicated that potassium inhibits ouabain binding at both binding sites.  相似文献   
78.
《Biomarkers》2013,18(5):378-384
Abstract

Context: Leukocytes have been found to be the predictor of outcome following acute coronary syndrome (ACS).

Objective: We sought to determine the relationship between leukocyte differentials and developing major adverse cardiac events (MACE) in patients with non-ST elevation ACS (NSTE-ACS).

Materials and methods: A total of 490 consecutive patients were enrolled, and MACE incidence was evaluated at long-term follow-up period.

Results: Total white blood cell (WBC) was higher in subjects occurring MACE. Moreover, elevated total WBC, ≥7.5?×?103/µL, independently predicted MACE.

Discussion and conclusion: Elevated admission total WBC can predict long-term MACE in NSTE-ACS patients better than other differentials.  相似文献   
79.
Abstract

Acetyl salicylic acid (aspirin) is one of the most widely used drugs in the world. Various plasma concentrations of aspirin and its predominant metabolite, salicylic acid, are required for its antiarthritic (1.5–2.5 mM), anti-inflammatory (0.5–5.0 mM) or antiplatelet (0.18–0.36 mM) actions. A recent study demonstrated the inhibitory effects of both aspirin and salicylic acid on oxidative phosphorylation and ATP synthesis in isolated rat cardiac mitochondria in a dose-dependent manner (0–10 mM concentration range). In this context, the present study was conducted to determine the effects of salicylic acid on inosine efflux (a potential biomarker of acute cardiac ischaemia) as well as cardiac contractile function in the isolated mouse heart following 20 min of zero-flow global ischaemia. Inosine efflux was found at significantly higher concentrations in ischaemic hearts perfused with Krebs buffer fortified with 1.0 mM salicylic acid compared with those without salicylic acid (12575±3319 vs. 1437±348 ng ml?1 min?1, mean±SEM, n=6 per group, p<0.01). These results indicate that 1.0 mM salicylic acid potentiates 8.8-fold ATP nucleotide purine catabolism into its metabolites (e.g. inosine, hypoxanthine). Salicylic acid (0.1 or 1.0 mM) did not appreciably inhibit purine nucleoside phosphorylase (the enzyme converts inosine to hypoxanthine) suggesting the augmented inosine efflux was due to the salicylic acid effect on upstream elements of cellular respiration. Whereas post-ischaemic cardiac function was further depressed by 1.0 mM salicylic acid, perfusion with 0.1 mM salicylic acid led to a remarkable functional improvement despite moderately increased inosine efflux (2.7-fold). We conclude that inosine is a sensitive biomarker for detecting cardiac ischaemia and salicylic acid-induced effects on cellular respiration. However, the inosine efflux level appears to be a poor predictor of the individual post-ischaemic cardiac functional recovery in this ex vivo model.  相似文献   
80.
Cell delivery via the retrograde coronary route boasts less vessel embolism, myocardial injury, and arrhythmogenicity when compared with those via antegrade coronary administration or myocardial injection. However, conventional insertion into the coronary sinus and consequent bleeding complication prevent its application in small animals. To overcome the complication of bleeding, we described a modified coronary retroinfusion technique via the jugular vein route in rats with myocardial infarction (MI). A flexible wire with a bent end was inserted into the left internal jugular vein and advanced slowly along the left superior vena cava. Under direct vision, the wire was run into the left cardiac vein by rotating the wire and changing the position of its tip. A fine tube was then advanced along the wire to the left cardiac vein. This modified technique showed less lethal hemorrhage than the conventional technique. Retroinfusion via transjugular catheter enabled efficient fluid or cell dissemination to the majority areas of the free wall of the left ventricle, covering the infarcted anterior wall. In conclusion, transjugular cardiac vein catheterization may make retrocoronary infusion a more safe and practical route for delivering cell, drug, and gene therapy into the infarcted myocardium of rats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号