首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2354篇
  免费   139篇
  国内免费   142篇
  2023年   21篇
  2022年   15篇
  2021年   28篇
  2020年   39篇
  2019年   49篇
  2018年   46篇
  2017年   60篇
  2016年   58篇
  2015年   53篇
  2014年   88篇
  2013年   144篇
  2012年   97篇
  2011年   115篇
  2010年   73篇
  2009年   109篇
  2008年   96篇
  2007年   101篇
  2006年   86篇
  2005年   96篇
  2004年   96篇
  2003年   83篇
  2002年   94篇
  2001年   77篇
  2000年   51篇
  1999年   55篇
  1998年   50篇
  1997年   58篇
  1996年   40篇
  1995年   60篇
  1994年   58篇
  1993年   63篇
  1992年   70篇
  1991年   29篇
  1990年   39篇
  1989年   30篇
  1988年   19篇
  1987年   19篇
  1986年   14篇
  1985年   35篇
  1984年   37篇
  1983年   21篇
  1982年   18篇
  1981年   26篇
  1980年   22篇
  1979年   24篇
  1978年   18篇
  1977年   12篇
  1976年   9篇
  1975年   11篇
  1974年   11篇
排序方式: 共有2635条查询结果,搜索用时 15 毫秒
111.
Bacterial biofilms are communities of bacteria entangled in a self‐produced extracellular matrix (ECM). Escherichia coli direct the assembly of two insoluble biopolymers, curli amyloid fibers, and phosphoethanolamine (pEtN) cellulose, to build remarkable biofilm architectures. Intense curiosity surrounds how bacteria harness these amyloid‐polysaccharide composites to build biofilms, and how these biopolymers function to benefit bacterial communities. Defining ECM composition involving insoluble polymeric assemblies poses unique challenges to analysis and, thus, to comparing strains with quantitative ECM molecular correlates. In this work, we present results from a sum‐of‐the‐parts 13C solid‐state nuclear magnetic resonance (NMR) analysis to define the curli‐to‐pEtN cellulose ratio in the isolated ECM of the E. coli laboratory K12 strain, AR3110. We compare and contrast the compositional analysis and comprehensive biofilm phenotypes for AR3110 and a well‐studied clinical isolate, UTI89. The ECM isolated from AR3110 contains approximately twice the amount of pEtN cellulose relative to curli content as UTI89, revealing plasticity in matrix assembly principles among strains. The two parent strains and a panel of relevant gene mutants were investigated in three biofilm models, examining: (a) macrocolonies on agar, (b) pellicles at the liquid‐air interface, and (c) biomass accumulation on plastic. We describe the influence of curli, cellulose, and the pEtN modification on biofilm phenotypes with power in the direct comparison of these strains. The results suggest that curli more strongly influence adhesion, while pEtN cellulose drives cohesion. Their individual and combined influence depends on both the biofilm modality (agar, pellicle, or plastic‐associated) and the strain itself.  相似文献   
112.
Germinating and growing pollen grains (male gametophytes) of Ricinus communis L. in liquid culture is achieved as follows: Pollen is collected over a 10-15 min period from mature anther clusters which have been removed from the male flowers and which have been kept at 25° C and 40-60% relative humidity. Samples weighing between 2.5 and 5.0 mg are brought as quickly as possible into a Desicote treated vial containing 17% sucrose and 30 ppm H3BO3 in boiled distilled water. The proportion (w/v) of pollen to culture solution should be 1:100. Shed pollen is kept in a humidity chamber whenever it is not being handled. The air in the culture vial is replaced by O2 at the pressure of 1 atmosphere plus 5 lb and the sealed vials are shaken gently for 8-10 hr while partially immersed in a waterbath kept at 30° C. The pollen is fixed by the addition to the incubation suspension of an absolute alcohol-lactic acid (4:1) fixing fluid. The proportion used is 36 parts of fixing fluid to 1 part of culture solution. The fixed pollen can be stored in the fixative. Smears are prepared by applying single drops of the constantly agitated suspension of fixed pollen to a microscope slide. After each drop has spread out and dried, an additional drop is added until 10-20 have been applied. The preparations are stained by adding a drop of 1% acetic-orcein and are sealed with fingernail lacquer. The method is well adapted to the following types of studies: pollen germination, physiology of pollen tube growth, morphology of the male gametocyte, and physiology and cytology of the generative cell and nucleus.  相似文献   
113.
The affinity digestion process for cellulase purification consisting of binding to amorphous cellulose, and amorphous cellulose hydrolysis in the presence of dialysis (Morag et al., 1991), was optimized to obtain high activity recoveries and consistent protein recoveries in the isolation of Clostridium thermocellum cellulase. Experiments were conducted using crude supernatant prepared from C. thermocellum grown on either Avicel or cellobiose. While no difference was observed between Avicel-grown or cellobiose-grown cellulase in the adsorption step, differences were observed during the hydrolysis step. The optimal amorphous cellulose loading was found to be 3 mg amorphous cellulose per milligram supernatant protein. At this loading, 90–100% of activity in the crude supernatant was adsorbed. Twenty-four-hour incubation with the amorphous cellulose during the adsorption stage was found to result in maximal and stable adsorption of activity to the substrate. By fitting the adsorption data to the Langmuir model, an adsorption constant of 410 L/g and a binding capacity of 0.249 g cellulase/g cellulose were obtained. The optimal length of time for hydrolysis was found to be 3 hr for cellulase purified from Avicel cultures and 4 hr for cellulase purified from cellobiose cultures. These loadings and incubation times allowed for more than 85% activity recovery.  相似文献   
114.
Proteomics is performed in microgravity research in order to determine protein alterations occurring qualitatively and quantitatively, when single cells or whole organisms are exposed to real or simulated microgravity. To this purpose, antibody-dependent (Western blotting, flow cytometry, Luminex® technology) and antibody-independent (mass spectrometry, gene array) techniques are applied. The anticipated findings will help to understand microgravity-specific behavior, which has been observed in bacteria, as well as in plant, animal and human cells. To date, the analyses revealed that cell cultures are more sensitive to microgravity than cells embedded in organisms and that proteins changing under microgravity are highly interactive. Furthermore, one has to distinguish between primary gravity-induced and subsequent interaction-dependent changes of proteins, as well as between direct microgravity-related effects and indirect stress responses. Progress in this field will impact on tissue engineering and medicine and will uncover possibilities of counteracting alterations of protein expression at lowered gravity.  相似文献   
115.
A bacterial cellulose–alginate (BCA) sponge, fabricated by a freeze-drying process, was successfully used as a yeast cell carrier for ethanol fermentation. The BCA sponge exhibited several advantageous properties, such as high porosity, appropriate pore size, strong hydrophilicity and high mechanical, chemical and thermal stabilities. BCA has an asymmetric structure, with a thin, dense outer layer covering an interior of interconnected macropores that are distributed throughout the sponge, which is effective for yeast immobilization. At 48 h of the fermentation, the maximum ethanol concentration produced by the immobilized culture (IC) in the BCA carrier was about 100 g/L, which was approximately 13% and 45% higher than that from the suspended culture (SC) and from IC in Ca-alginate matrix, respectively. Repeated-batch ethanol productions using IC in BCA carriers were also more stable than those using SC or IC in Ca-alginate matrix. The results of a 15 cycle repeated batch operation demonstrated that the system with IC in BCA exhibited superior long-term stability for ethanol fermentation with the average ethanol productivity at 1.9 g/L h and the immobilized yield at 86%. The improved ethanol fermentation performance was mainly due to the water uptake ability and properly interconnected pore structure, which help to overcome limiting mass transfer.  相似文献   
116.
117.
In higher plants, cellulose is synthesized by cellulose synthase complexes, which contain multiple isoforms of cellulose synthases (CESAs). Among the total 10 CESA genes in Arabidopsis, recessive mutations at three of them cause the collapse of mature xylem cells in inflorescence stems of Arabidopsis (irx1cesa8, irx3cesa7 and irx5cesa4). These CESA genes are considered secondary cell wall CESAs. The others (the function CESA10 is still unknown) are thought to be specialized for cellulose synthesis in the primary cell wall. A split-ubiquitin membrane yeast two-hybrid system was used to assess interactions among four primary CESAs (CESA1, CESA2, CESA3, CESA6) and three secondary CESAs (CESA4, CESA7, CESA8). Our results showed that primary CESAs could physically interact with secondary CESAs in a limited fashion. Analysis of transgenic lines showed that CESA1 could partially rescue irx1cesa8 null mutants, resulting in complementation of the plant growth defect, collapsed xylem and cellulose content deficiency. These results suggest that mixed primary and secondary CESA complexes are functional using experimental set-ups.  相似文献   
118.
Lobopodians, a paraphyletic group of rare but morphologically diverse Palaeozoic vermiform animals bearing metameric appendages, are key to the origin of extant panarthropods. First discovered in 1983 on Mount Stephen (Yoho National Park, British Columbia), the Cambrian (Wuliuan) Burgess Shale lobopodian nicknamed ‘Collins’ monster’ is formally described as Collinsovermis monstruosus gen. et sp. nov. A formal systematic treatment of the comparable and poorly known lobopodian Acinocricus stichus from Utah is also provided. The body of Collinsovermis is plump and compact but shows the diagnostic suspension-feeding characters of luolishaniid lobopodians. It possesses 14 contiguous pairs of lobopods, lacking space between them. The 6 anterior pairs are elongate, adorned with about 20 pairs of long and slightly curved ventral spinules arranged in a chevron-like pattern. These appendages terminate in a pair of thin claws and their dorsal surfaces are covered in minute spines or setae. The 8 posterior lobopod pairs, which attach to a truncated body termination, are stout and smooth, each terminated by a single strong recurved claw. Each somite bears a pair of dorsal spines; somites 4 and posteriad bear an additional median spine. The spines on somites 1–3 are much shorter than the spines on the remaining somites. The head is short, bears a terminal mouth and a pair of antenniform outgrowths, and is covered by an oblong sclerite. Collinsovermis, plus Collinsium and Acinocricus, are found to comprise a sub-group of stout luolishaniid lobopodians with remarkably long spinules on the front lobopods, interpreted here as a clade (Teratopodidae fam. nov.) This clade is distinct from both the comparatively slenderer Luolishania and a sub-group composed of Facivermis and Ovatiovermis lacking body sclerites. Luolishaniids were mostly sessile forerunners of arthropods that had coupled efficient suspension-feeding devices and, as in Collinsovermis, strong defensive or deterrent features.  相似文献   
119.

Background

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.

Methods

We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists.

Results

The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain.

Conclusion

We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo.

General significance

This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine.  相似文献   
120.
In this study, we report a novel cellulase [β-1,4-endoglucanase (EGase), EC 3.2.1.4] cDNA (Bh-EGase II) belonging to the glycoside hydrolase family (GHF) 45 from the beetle Batocera horsfieldi. The Bh-EGase II gene spans 720 bp and consists of a single exon coding for 239 amino acid residues. Bh-EGase II showed 93.72% protein sequence identity to Ag-EGase II from the beetle Apriona germari. The GHF 45 catalytic site is conserved in Bh-EGase II. Bh-EGase II has three putative N-glycosylation sites at 56–58 (N–K–S), 99–101 (N–S–T), and 237–239 (N–Y–S), respectively. The cDNA encoding Bh-EGase II was expressed in baculovirus-infected insect BmN cells and Bombyx mori larvae. Recombinant Bh-EGase II from BmN cells and larval hemolymph had an enzymatic activity of approximately 928 U/mg. The enzymatic catalysis of recombinant Bh-EGase II showed the highest activity at 50 °C and pH 6.0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号