首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7192篇
  免费   529篇
  国内免费   476篇
  8197篇
  2024年   16篇
  2023年   107篇
  2022年   113篇
  2021年   125篇
  2020年   220篇
  2019年   218篇
  2018年   208篇
  2017年   244篇
  2016年   227篇
  2015年   193篇
  2014年   238篇
  2013年   496篇
  2012年   218篇
  2011年   320篇
  2010年   204篇
  2009年   363篇
  2008年   392篇
  2007年   369篇
  2006年   299篇
  2005年   319篇
  2004年   286篇
  2003年   235篇
  2002年   221篇
  2001年   191篇
  2000年   206篇
  1999年   172篇
  1998年   151篇
  1997年   151篇
  1996年   144篇
  1995年   117篇
  1994年   139篇
  1993年   139篇
  1992年   136篇
  1991年   123篇
  1990年   116篇
  1989年   93篇
  1988年   66篇
  1987年   76篇
  1986年   53篇
  1985年   80篇
  1984年   83篇
  1983年   46篇
  1982年   67篇
  1981年   52篇
  1980年   56篇
  1979年   30篇
  1978年   25篇
  1977年   23篇
  1976年   14篇
  1975年   5篇
排序方式: 共有8197条查询结果,搜索用时 15 毫秒
891.
Methionine auxotrophic mutants of Methylophilus methylotrophus AS1 expressing a mutant form of dapA (dapA24) encoding a dihydrodipicolinate synthase desensitized from feedback inhibition by L-lysine, and mutated lysE (lysE24) encoding the L-lysine exporter from Corynebacterium glutamicum 2256, produced higher amounts of L-lysine from methanol as sole carbon source than did other amino acid auxotrophic mutants. Especially, the M. methylotrophus 102 strain, carrying both dapA24 and lysE24, produced L-lysine in more than 1.5 times amounts higher than the parent. A single-base substitution was identified in this auxotroph in codon-329 of the open reading frame of metF, encoding 5,10-methylene-tetra-hydrofolate reductase. We constructed a metF disruptant mutant carrying both dapA24 and lysE24, and confirmed increases in L-lysine production. This is the first report to the effect that metF deficient increased L-lysine production in methylotroph.  相似文献   
892.
Propionic acid (PA) is an important building block chemical and finds a variety of applications in organic synthesis, food, feeding stuffs, perfume, paint and pharmaceutical industries. Presently, PA is mainly produced by petrochemical route. With the continuous increase in oil prices, public concern about environmental pollution, and the consumers’ desire for bio-based natural and green ingredients in foods and pharmaceuticals, PA production from propionibacteria has attracted considerable attention, and substantial progresses have been made on microbial PA production. However, production of PA by propionibacteria is facing challenges such as severe inhibition of end-products during cell growth and the formation of by-products (acetic acid and succinic acid). The integration of reverse metabolic engineering and systematic metabolic engineering provides an opportunity to significantly improve the acid tolerance of propionibacteria and reduce the formation of by-products, and makes it feasible to strengthen the commercial competition of biotechnological PA production from propionibacteria to be comparable to the petrochemical route.  相似文献   
893.
Abstract Most insect pheromones comprise multicomponent blends of geometric or optical isomers, and one major question is how insects produce species‐specific ratios of components for successful reproductive isolation. Key enzymes suggested to be involved in pheromone biosynthesis are acetyl‐coenzyme A carboxylase and fatty acyl synthetase, chain‐shortening enzymes, desaturases, elongases, reductases, oxidases, and alcohol acetyl transferases. The female pheromone composition of the Egyptian armyworm Spodoptera littoralis (Boisd.) is highly dependent on the origin of the strain. In this review, we present a summary of the different reported pheromone compositions of the moth, including from our recent studies on this subject, as well as the biosynthetic routes to the different components and the molecular approaches involved. In addition, the key role played in the proposed biosynthetic pathways by a number of important biosynthetic enzymes, such as chain shortening enzymes, desaturases and alcohol acetyl transferases, is outlined, as well as the latest developments on the inhibition of these enzymes.  相似文献   
894.
This study aimed to compare the ability of two Arthrospira platensis (Nordst.) Gomont strains, M2 and Kenya, isolated from two different habitats, to acclimate to low temperature (15°C). Both strains had similar growth rates at 30°C, but once acclimated to low temperature, M2 showed a greater decline in growth (59% vs. 41% in the Kenya strain). We suggest that the Kenya strain acclimated better to low temperature by down‐regulating its photosynthetic activity through (i) decreasing antenna size and thus reducing energy flux into the photosystems; (ii) decreasing reaction center density (RC/CSX) and the performance index, thus decreasing the trapping probability and electron transport rate while maintaining electron transport probability for electron transport beyond QA? unchanged; (iii) increasing the energy dissipation flux. In contrast, the M2 strain showed no difference in antenna size and exhibited a much lower decrease in RC/CSX and a lower dissipation rate. Hence, the Kenya strain minimized potential damage on the acceptor side of PSII compared to the M2 cells. Furthermore, acclimation to low temperature was accompanied by an improved mechanism for handling excess energy resulting in an enhanced ability of the Kenya strain to rapidly repair damaged PSII RCs and withstand a high photon flux density (HPFD) stress; this finding might be defined as a cross‐adaptation phenomenon. This study may provide a tool to identify strains suitable for outdoor mass‐production in different regions characterized by different climate conditions.  相似文献   
895.
896.
Massive anthropogenic acceleration of the global nitrogen (N) cycle has stimulated interest in understanding the fate of excess N loading to aquatic ecosystems. Nitrate (NO3 ) is traditionally thought to be removed mainly by microbial respiratory denitrification coupled to carbon (C) oxidation, or through biomass assimilation. Alternatively, chemolithoautotrophic bacterial metabolism may remove NO3 by coupling its reduction with the oxidation of sulfide to sulfate (SO4 2−). The NO3 may be reduced to N2 or to NH4 +, a form of dissimilatory nitrate reduction to ammonium (DNRA). The objectives of this study were to investigate the importance of S oxidation as a NO3 removal process across diverse freshwater streams, lakes, and wetlands in southwestern Michigan (USA). Simultaneous NO3 removal and SO4 2− production were observed in situ using modified “push-pull” methods in nine streams, nine wetlands, and three lakes. The measured SO4 2− production can account for a significant fraction (25–40%) of the overall NO3 removal. Addition of 15NO3 and measurement of 15NH4 + production using the push–pull method revealed that DNRA was a potentially important process of NO3 removal, particularly in wetland sediments. Enrichment cultures suggest that Thiomicrospira denitrificans may be one of the organisms responsible for this metabolism. These results indicate that NO3 -driven SO4 2− production could be widespread and biogeochemically important in freshwater sediments. Removal of NO3 by DNRA may not ameliorate problems such as eutrophication because the N remains bio-available. Additionally, if sulfur (S) pollution enhances NO3 removal in freshwaters, then controls on N processing in landscapes subject to S and N pollution are more complex than previously appreciated. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
897.
The effect of the rate of increase in concentrate allowance after calving with two concentrate mixes (A and B) differing in composition was evaluated using 64 Finnish Ayrshire cows during the first 100 days of lactation. After calving, the concentrate allowance of multiparous cows was increased stepwise from 4 to 17 kg/day, and of primiparous cows from 3 to 13.5 kg/day over 12 days (F rate of increase; multiparous 1.08 kg/day, primiparous 0.88 kg/day) or 24 days (S rate of increase; mutiparous 0.54 kg/day, primiparous 0.44 kg/day). The concentrates were formulated to have similar crude protein and metabolizable energy concentrations but differing starch and NDF concentrations. For concentrate A the starch and NDF concentrations were 421 and 167 g/kg dry matter (DM) and for concentrate B 258 and 251 g/kg DM. All cows received grass silage ad libitum. The higher concentrate intake during weeks 1 to 4 of lactation with F compared with the S rate of increase caused higher DM, energy and protein intake. The higher concentrate intake for F than for S treatment in early lactation did not cause a large decrease in silage intake (8.8 v. 8.3 kg DM/day). The intake of concentrate A and B after calving did not differ for S treatment. However, for F treatment the intake of fibrous concentrate B increased faster than starch-rich concentrate A during weeks 1 to 4 of lactation. The concentrate composition had no effect on energy-corrected milk (ECM) yield during weeks 1 to 4 of lactation for S treatments, but with F treatments the cows fed B concentrate produced more milk. The F rate of increase in concentrate allowance compared with the S rate increased the calculated energy balance after calving. The rate of increase in concentrate feeding post partum or concentrate composition had no effect on DM, energy or protein intake during the whole 100-day experiment. The average ECM yield over days 1 to 100 of lactation was higher for S than for F treatments and tended to be higher with concentrate B than A. Results of this study showed that by the fast rate of increase in concentrate allowance after calving on a grass silage diet, it was possible to improve the energy status of the cows in early lactation. This had, however, no effect on production later in lactation.  相似文献   
898.
Eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide and sensible and latent heat have operated since clear felling of a 50‐year old maritime pine stand in Les Landes, in Southwestern France. Turbulent fluxes from the closed‐path system are computed via different methodologies, including those recommended from EUROFLUX (Adv. Ecol. Res. 30 (2000) 113; Agric. Forest Meteorol. 107 (2001a, b) 43 and 71), and sensitivity analysis demonstrates the merit of post‐processing for accurate flux calculation. Footprint modeling, energy balance closure, and empirical modeling corroborate the eddy flux measurements, indicating best reliability in the daytime. The ecosystem, a net source of atmospheric CO2, is capable of fixing carbon during fair weather during any season due to the abundance of re‐growing species (mostly grass), formerly from the understorey. Annual carbon loss of 200–340 g m?2 depends on the period chosen, with inter‐annual variability evident during the 18‐month measurement period and apparently related to available light. Empirical models, with weekly photosynthetic parameters corresponding to seasonal vegetation and respiration depending on soil temperature, fit the data well and allow partitioning of annual NEE into GPP and TER components. Comparison with a similar nearby mature forest (Agric. Forest Meteorol. 108 (2001) 183) indicates that clear‐cutting reduces GPP by two thirds but TER by only one third, transforming a strong forest sink into a source of CO2. Likewise, the loss of 50% of evapotranspiration (by the trees) leads to increased temperatures and thus reduced net radiation (by one third), and a 50% increase in sensible heat loss by the clear cut.  相似文献   
899.
Emiliania huxleyi and Gephyrocapsa oceanica are the predominant coccolithophorid species that produce blooms in the ocean and affect the global environment. These species are capable of carbon fixation by both photosynthesis for organic matter production and by intracellular calcification for coccolith production. Both processes were strongly affected by the nutrient status in a laboratory culture. The coccolith production was stimulated by the addition of a high concentration of sodium bicarbonate and by the depletion of phosphate. Interestingly, when the calcification was stimulated, the increase in cell number during algal growth was greatly suppressed and then the cell volume increased. When the growth rate was increased under nutrient-sufficient conditions, the cells became very small in size and most of them bore few or no coccoliths. The data from laboratory experiments show that the cell growth and calcification proceeded apparently independently at different phases. We, therefore, assume that the coccolithophorid blooms in the ocean might be separated into two phases; firstly, the increase in cell population might be triggered by an adequate supply of nutrients to enhance algal growth and then the calcification might subsequently be stimulated when the nutrients become depleted by substantial algal growth.  相似文献   
900.
Streptomyces murayamensis carries two aspartate kinase (AK) genes: one for the biosynthesis of lysine, threonine, and methionine, and the other (nspJ) contained in the biosynthetic gene cluster for the secondary metabolite, 4-hydroxy-3-nitrosobenzamide, for catalyzing the first reaction. AKs involved in the biosynthesis of amino acids are often regulated allosterically by the end products. In the present study, we characterized NspJ to investigate whether AKs involved in secondary metabolism were also allosterically regulated. NspJ was in α2β2 and (α2β2)2 heterooligomeric forms, and was insensitive to all the compounds tested including lysine, threonine, and methionine. The reduction in the activity following the removal of ammonium sulfate, which induced subunit dissociation, suggests that the β subunit may be involved in stabilizing the structure of the α subunit in order to exhibit its activity. This study has provided the first example of a feedback-insensitive α2β2-type AK, which is involved in the secondary metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号