首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7198篇
  免费   525篇
  国内免费   474篇
  8197篇
  2024年   16篇
  2023年   107篇
  2022年   113篇
  2021年   125篇
  2020年   220篇
  2019年   218篇
  2018年   208篇
  2017年   244篇
  2016年   227篇
  2015年   193篇
  2014年   238篇
  2013年   496篇
  2012年   218篇
  2011年   320篇
  2010年   204篇
  2009年   363篇
  2008年   392篇
  2007年   369篇
  2006年   299篇
  2005年   319篇
  2004年   286篇
  2003年   235篇
  2002年   221篇
  2001年   191篇
  2000年   206篇
  1999年   172篇
  1998年   151篇
  1997年   151篇
  1996年   144篇
  1995年   117篇
  1994年   139篇
  1993年   139篇
  1992年   136篇
  1991年   123篇
  1990年   116篇
  1989年   93篇
  1988年   66篇
  1987年   76篇
  1986年   53篇
  1985年   80篇
  1984年   83篇
  1983年   46篇
  1982年   67篇
  1981年   52篇
  1980年   56篇
  1979年   30篇
  1978年   25篇
  1977年   23篇
  1976年   14篇
  1975年   5篇
排序方式: 共有8197条查询结果,搜索用时 0 毫秒
121.
Rotifers were cultured with five different organic and inorganic fertilizers in nursery ponds. Of the fertilizers used, mustard oil cake gave significantly (p < 0.01) higher production of rotifers than that of mohua oil cake followed by cow-dung, wheat bran, mixture of NPK and control. The higher production of rotifers was directly related with the higher doses of fertilizers. Among the rotifer species identified, the abundance of Brachionus caudatus and B. forficula were significantly (p < 0.01) higher than others. Available N, available P, exchangeable K and exchangeable Ca and exchangeable Mg were generally higher in ponds where organic fertilizers were used. Proximate composition of rotifers varied depending on the kinds of fertilizers. The multiple correlations of physico-chemical properties were highly significant (p < 0.01) with the growth and production of B. caudatus (R = 0.995), B. forficula (R = 0.932), Trichocerca capucina (R = 0.917), B. patulus (R = 0.901) and B. angularis (R = 0.892) and simply significant (p < 0.05) in the case of Keratella tropica (R = 0.880), Hexarthra intermadia (R = 0.875), B. calyciflorus (R = 0.864) and Filinia spp. (R = 0.856) contributing 91.20%, 86.86%, 84.09%, 81.18%, 79.57%, 77.44%, 76.56%, 74.65% and 73.27% of total effect of water properties on the growth of these species, respectively. The residual effect of nine different physico-chemical properties of water on the production of rotifers was 78.92% which indicates that these properties of water had only 21.08% influence on the production of rotifers.  相似文献   
122.
Phytoplankton biomass, morphological and taxonomic composition, species diversity and productivity were analyzed in a shallow lake of the Middle Paraná River floodplain (El Tigre, 31 ° 41 S and 60° 42 W), between November 1986 and July 1988. Lake inundation (filling and through-flow phases) constituted an intense long-term perturbation in the physical and chemical environment. As the lake filled with river water, K-selected species (netplanktonic filamentous bluegreens, > 37 µm, with low surface area/volume (SA/V) ratios) that had existed prior to filling (late spring 1986) were replaced in summer-fall by r-selected species (nannoplanktonic chlorophytes and cryptophytes, < 37 µm, mainly stout forms with high SA/V ratios). During the through-flow phase, lentic phytoplankton was replaced by lotic flagellate populations due to the direct flushing by river water. During the period of falling water (drainage and isolation phases), nanoplanktonic algae with similar characteristics to those of the filling phase dominated in late winter-spring. Later in the isolation phase, these were succeeded by K-selected species (netplanktonic algae, mainly motile spherical dinoflagellates and filamentous bluegreens with low SA/V ratios). Simultaneously, primary production per unit biomass decreased and total biomass and specific diversity increased. Seasonal changes of phytoplankton in floodplain lakes can be interpreted as the interaction between true successional development (as observed in the drainage and isolation phases) and intermediate disturbance. Using Reynolds' terminology, short-term disturbance (slight inflow of nutrient-rich river water) caused reversion to an earlier stage in the former succession, and long-term disturbance (lake inundation) truncated the successional progression and a new (or shifted) succession was initiated.  相似文献   
123.
Mangroves are among the most carbon-dense ecosystems worldwide. Most of the carbon in mangroves is found belowground, and root production might be an important control of carbon accumulation, but has been rarely quantified and understood at the global scale. Here, we determined the global mangrove root production rate and its controls using a systematic review and a recently formalised, spatially explicit mangrove typology framework based on geomorphological settings. We found that global mangrove root production averaged ~770 ± 202 g of dry biomass m−2 year−1 globally, which is much higher than previously reported and close to the root production of the most productive tropical forests. Geomorphological settings exerted marked control over root production together with air temperature and precipitation (r2 ≈ 30%, p < .001). Our review shows that individual global changes (e.g. warming, eutrophication, drought) have antagonist effects on root production, but they have rarely been studied in combination. Based on this newly established root production rate, root-derived carbon might account for most of the total carbon buried in mangroves, and 19 Tg C lost in mangroves each year (e.g. as CO2). Inclusion of root production measurements in understudied geomorphological settings (i.e. deltas), regions (Indonesia, South America and Africa) and soil depth (>40 cm), as well as the creation of a mangrove root trait database will push forward our understanding of the global mangrove carbon cycle for now and the future. Overall, this review presents a comprehensive analysis of root production in mangroves, and highlights the central role of root production in the global mangrove carbon budget.  相似文献   
124.
Drylands are key contributors to interannual variation in the terrestrial carbon sink, which has been attributed primarily to broad-scale climatic anomalies that disproportionately affect net primary production (NPP) in these ecosystems. Current knowledge around the patterns and controls of NPP is based largely on measurements of aboveground net primary production (ANPP), particularly in the context of altered precipitation regimes. Limited evidence suggests belowground net primary production (BNPP), a major input to the terrestrial carbon pool, may respond differently than ANPP to precipitation, as well as other drivers of environmental change, such as nitrogen deposition and fire. Yet long-term measurements of BNPP are rare, contributing to uncertainty in carbon cycle assessments. Here, we used 16 years of annual NPP measurements to investigate responses of ANPP and BNPP to several environmental change drivers across a grassland–shrubland transition zone in the northern Chihuahuan Desert. ANPP was positively correlated with annual precipitation across this landscape; however, this relationship was weaker within sites. BNPP, on the other hand, was weakly correlated with precipitation only in Chihuahuan Desert shrubland. Although NPP generally exhibited similar trends among sites, temporal correlations between ANPP and BNPP within sites were weak. We found chronic nitrogen enrichment stimulated ANPP, whereas a one-time prescribed burn reduced ANPP for nearly a decade. Surprisingly, BNPP was largely unaffected by these factors. Together, our results suggest that BNPP is driven by a different set of controls than ANPP. Furthermore, our findings imply belowground production cannot be inferred from aboveground measurements in dryland ecosystems. Improving understanding around the patterns and controls of dryland NPP at interannual to decadal scales is fundamentally important because of their measurable impact on the global carbon cycle. This study underscores the need for more long-term measurements of BNPP to improve assessments of the terrestrial carbon sink, particularly in the context of ongoing environmental change.  相似文献   
125.
Astrocytes, neuronal perikarya and synaptosomes were prepared from rat cerebellum. Kinetics of high and low affinity uptake systems of glutamate and aspartate, nominal rates of14CO2 production from [U–14C]glutamate, [U–14C]aspartate and [1–14C]glutamate and activities of enzymes of glutamate metabolism were studied in these preparations. The rate of uptake and the nomial rate of production of14CO2 from these amino acids was higher in the astroglia than neuronal perikarya and synaptosomes. Activities of glutamine synthetase and glutamate dehydrogenase were higher in astrocytes than in neuronal perikarya and synaptosomes. Activities of glutaminase and glutamic acid decarboxylase were observed to be highest in neuronal perikarya and synaptosomes respectively. These results are in agreement with the postulates of theory of metabolic compartmentation of glutamate while others (presence of glutaminase in astrocytes and glutamine synthetase in synaptosomes) are not. Results of this study also indicated that (i) at high extracellular concentrations, glutamate/aspartate uptake may be predominantly into astrocytes while at low extracellular concentrations, it would be into neurons (ii) production of -ketoglutarate from glutamate is chiefly by way of transamination but not by oxidative deamination in these three preparations and (iii) there are topographical differences glutamate metabolism within the neurons.  相似文献   
126.
Summary The rate of ethanolic fermentation of high gravity wheat mashes bySaccharomyces cerevisiae was increased by nitrogen sources such as ammonium sulfate or arginine. This stimulation was mediated through increased proliferation of cells. Large quantities of proline, however, were excreted by the yeast into the medium when arginine was added as a nutrient supplement. The amount of proline excreted was proportional to the concentration of arginine supplied. Nitrogen sources such as ammonium sulfate or lysine enhanced the production of proline from arginine and its excretion into the medium. Results show that the stimulation of very high gravity fermentation by arginine is not merely through provision of a source of nitrogen but also because it serves as a precursor for the production of proline, a compound which may play a significant role in alleviating the effects of osmotic stress.  相似文献   
127.
For more than 20 years scientists of the ‘Food-chain studies’ Group of the former Limnological Institute have been studying interactions within the pelagic food web. Purpose of research was to explain the structure and dynamics of the zooplankton and fish communities in lakes and reservoirs in relation to biotic and abiotic environmental factors. A so-called multi-species approach was used, in which all common and abundant species within a specific ecosystem were studied on the individual and population level with the same degree of detail. The recent results and the scientific approach used are evaluated and the main gaps in knowledge about food-web dynamics in shallow eutrophic lakes are identified and discussed. It is concluded that instead of the purely functional approach used so far, future studies should also include evolutionary aspects which determine the success of an organism in a given environment and that more attention should be paid to central questions in ‘community ecology’. This paper is based on a lecture given by the first author for the Netherlands Society of Aquatic Ecology on May 12th, 1992, in Amsterdam, The Netherlands.  相似文献   
128.
Nucleoside phosphorylases are important biocatalysts for the chemo-enzymatic synthesis of nucleosides and their analogs which are, among others, used for the treatment of viral infections or cancer. S-methyl-5′-thioadenosine phosphorylases (MTAP) are a group of nucleoside phosphorylases and the thermostable MTAP of Aeropyrum pernix (ApMTAP) was described to accept a wide range of modified nucleosides as substrates. Therefore, it is an interesting biocatalyst for the synthesis of nucleoside analogs for industrial and therapeutic applications. To date, thermostable nucleoside phosphorylases were produced in shake flask cultivations using complex media. The drawback of this approach is low volumetric protein yields which hamper the wide-spread application of the thermostable nucleoside phosphorylases in large scale. High cell density (HCD) cultivations allow the production of recombinant proteins with high volumetric yields, as final optical densities >100 can be achieved. Therefore, in this study, we developed a suitable protocol for HCD cultivations of ApMTAP. Initially, optimum expression conditions were determined in 24-well plates using a fed-batch medium. Subsequently, HCD cultivations were performed using E. coli BL21-Gold cells, by employing a glucose-limited fed-batch strategy. Comparing different growth rates in stirred-tank bioreactors, cultivations revealed that growth at maximum growth rates until induction resulted in the highest yields of ApMTAP. On a 500-mL scale, final cell dry weights of 87.1–90.1 g L−1 were observed together with an overproduction of ApMTAP in a 1.9%–3.8% ratio of total protein. Compared to initially applied shake flask cultivations with terrific broth (TB) medium the volumetric yield increased by a factor of 136. After the purification of ApMTAP via heat treatment and affinity chromatography, a purity of more than 90% was determined. Activity testing revealed specific activities in the range of 0.21 ± 0.11 (low growth rate) to 3.99 ± 1.02 U mg−1 (growth at maximum growth rate). Hence, growth at maximum growth rate led to both an increased expression of the target protein and an increased specific enzyme activity. This study paves the way towards the application of thermostable nucleoside phosphorylases in industrial applications due to an improved heterologous expression in Escherichia coli.  相似文献   
129.
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50/mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.  相似文献   
130.
Biogas biorefineries have opened up new horizons beyond heat and electricity production in the anaerobic digestion sector. Added-value products such as polyhydroxyalkanoates (PHAs), which are environmentally benign and potential candidates to replace conventional plastics, can be generated from biogas. This work investigated the potential of an innovative two-stage growth-accumulation system for the continuous production of biogas-based polyhydroxybutyrate (PHB) using Methylocystis hirsuta CSC1 as cell factory. The system comprised two turbulent bioreactors in series to enhance methane and oxygen mass transfer: a continuous stirred tank reactor (CSTR) and a bubble column bioreactor (BCB) with internal gas recirculation. The CSTR was devoted to methanotrophic growth under nitrogen balanced growth conditions and the BCB targeted PHB production under nitrogen limiting conditions. Two different operational approaches under different nitrogen loading rates and dilution rates were investigated. A balanced nitrogen loading rate along with a dilution rate (D) of 0.3 day−1 resulted in the most stable operating conditions and a PHB productivity of ~53 g PHB m−3 day−1. However, higher PHB productivities (~127 g PHB m−3 day−1) were achieved using nitrogen excess at a D = 0.2 day−1. Overall, the high PHB contents (up to 48% w/w) obtained in the CSTR under theoretically nutrient balanced conditions and the poor process stability challenged the hypothetical advantages conferred by multistage vs single-stage process configurations for long-term PHB production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号