首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7219篇
  免费   1332篇
  国内免费   2007篇
  2024年   73篇
  2023年   317篇
  2022年   221篇
  2021年   203篇
  2020年   433篇
  2019年   441篇
  2018年   516篇
  2017年   479篇
  2016年   474篇
  2015年   461篇
  2014年   480篇
  2013年   553篇
  2012年   389篇
  2011年   441篇
  2010年   314篇
  2009年   397篇
  2008年   393篇
  2007年   396篇
  2006年   378篇
  2005年   316篇
  2004年   286篇
  2003年   282篇
  2002年   286篇
  2001年   236篇
  2000年   205篇
  1999年   186篇
  1998年   164篇
  1997年   131篇
  1996年   133篇
  1995年   117篇
  1994年   124篇
  1993年   87篇
  1992年   98篇
  1991年   59篇
  1990年   59篇
  1989年   55篇
  1988年   51篇
  1987年   34篇
  1986年   39篇
  1985年   49篇
  1984年   29篇
  1983年   17篇
  1982年   37篇
  1981年   25篇
  1980年   19篇
  1979年   19篇
  1978年   17篇
  1976年   15篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
151.
Plant communities from oligotrophic, poorly buffered waters are seriously threatened by both, acidification and eutrophication/alkalinization. Acidification is mainly caused by atmospheric deposition of acidifying substances while eutrophication is often the result of inlet of nutrient enriched, calcareous brook- or groundwater. The plant production in very soft waters is often limited by low levels of inorganic carbon, nitrogen and/or phosphorus. This paper deals with the possibilities for restoration of formerly oligotrophic but now eutrophied and alkalinized softwater systems. Restoration based upon nitrogen limitation is not likely to be successful as the atmospheric deposition of nitrogen in The Netherlands is very high. Phosphorus limitation can also be a problem. One can stop the input of phosphorus and remove the mud layer, but the problem remains that also the deeper mineral sandy sediments are saturated with phosphate. A possible remedy, however, is a combination of carbon- and phosphorus limitation. Many plants from eutrophic environments never occur in very soft waters, probably as a result of carbon limitation. In addition, mobilisation of phosphate is much lower in waters with very low bicarbonate levels. Restoration of a former oligotrophic softwater lake by reducing the inlet of calcareous surface water, in combination with removal of the organic sediment layer, appeared to be very successful. Many endangered plant species such asIsoetes echinospora, Luronium natans, Deschampsia setacea andEchinodorus repens developed spontaneously from the still viable seedbank.  相似文献   
152.
Theoretically, there are three principal ways in which ecosystem processes might respond to reductions in species richness. These theories are reviewed, and then considered in the context of a study of the diversity of soil nematodes and termites in near-primary forest sites at Mbalmayo, Cameroon, and the contribution made by these two taxa to carbon fluxes (CO2 and CH4) from the forest floor. Nematode abundances average 2.04 × 106 m-2, and termites between 2933 and 6957 m-2. The site is the most species-rich yet investigated for both groups anywhere in the world, so that a very large number of species contribute to carbon fluxes. We speculate about how much redundancy might be built into the functioning of both assemblages, and point out the enormous difficulties of resolving such questions, and of producing such detailed species-inventories.  相似文献   
153.
谌竟清  胡立江   《生物工程学报》1996,12(2):194-200
以颗粒活性炭(GAC)为吸附剂,采用多柱串联流化床进行味精中和液脱色,对柱过程进行了模拟研究。测定了平衡数据、传质动力学及流体流动参数,建立了具有广泛适应性的,包括颗粒分级、粒度分布、内外扩散及两相返混的宽粒度液固流化床吸附过程模型。对所研究体系的模拟计算与实验结果符合较好。  相似文献   
154.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   
155.
Increased atmospheric CO2 often but not always leads to large decreases in leaf conductance. Decreased leaf conductance has important implications for a number of components of CO2 responses, from the plant to the global scale. All of the factors that are sensitive to a change in soil moisture, either amount or timing, may be affected by increased CO2. The list of potentially sensitive processes includes soil evaporation, run-off, decomposition, and physiological adjustments of plants, as well as factors such as canopy development and the composition of the plant and microbial communities. Experimental evidence concerning ecosystem-scale consequences of the effects of CO2 on water use is only beginning to accumulate, but the initial indication is that, in water-limited areas, the effects of CO2-induced changes in leaf conductance are comparable in importance to those of CO,2-induced changes in photosynthesis. Above the leaf scale, a number of processes interact to modulate the response of canopy or regional evapotran-spiration to increased CO2. While some components of these processes tend to amplify the sensitivity of evapo-transpiration to altered leaf conductance, the most likely overall pattern is one in which the responses of canopy and regional evapotranspiration are substantially smaller than the responses of canopy conductance. The effects of increased CO2 on canopy evapotranspiration are likely to be smallest in aerodynamically smooth canopies with high leaf conductances. Under these circumstances, which are largely restricted to agriculture, decreases in evapotranspiration may be only one-fourth as large as decreases in canopy conductance. Decreased canopy conductances over large regions may lead to altered climate, including increased temperature and decreased precipitation. The simulation experiments to date predict small effects globally, but these could be important regionally, especially in combination with radiative (greenhouse) effects of increased CO2.  相似文献   
156.
Photosynthetic pigments, C, N, and P tissue composition, and photosynthetic rate were measured from April to October in the brown alga Phyllariopsis purpurascens (C. Agardh) Henry et South (Laminariales, Phaeophyta) growing at a 30-m depth in the Strait of Gibraltar. Ir-radiance reaching the population ranged from 13.5 to 27.5 mol.m-2.mo-1. The available light for this species, expressed as a percentage of the irradiance above the water, was 1.8%. Dissolved inorganic nitrogen forms, NO3-and NH4+, were constant from April to October, whereas phosphate was depleted in August. Chlorophyll a decreased from 520.0 ± 165.0 to 199.6 ± 159.9 μg.g-1 dry weight; in contrast, chlorophyll c and carotenoids did not change until September but increased threefold in October. C:N and N:P ratios changed in the same way and in the same range. They were constant until July but increased from 15–17 up to 42 (C:N) and from 14 to 40 (N:P) in October, suggesting a severe P limitation of growth of this species. The dark respiration rate and the light compensation point were constant from April to October (0.5 ± 0.1 μmol O2. m-2.s-1 and 6.5 ± 0.2 μmol.m-2. s-1, respectively), whereas the maximum rate of apparent photosynthesis, light onset saturation parameter, and half saturation constant for light were maximum in April to May (3.7 μmol O2. m-2.s-1and 40 and 41.5 μmol.m-2. s-1, respectively) and October (3.6 μmol O2. m-2.s-1 and 50 and 53.7 μmol.m-2. s-1, respectively). They were minimum in August (1.2 μmol O2.m-2.s-1 and 11.3 and 12 μmol.m-2.s-1, respectively). These minimum figures yielded a negative carbon budget in August and 0 in September, whereas it was positive the rest of the year. Photosynthetic efficiency, estimated by the ratio between maximum apparent photosynthesis and light half saturation constant, showed a strong agreement with productivity measured by means of an independent method. These results indicate that lamina expansion in this species is controlled by photosynthetic efficiency.  相似文献   
157.
Dinitrogen-fixing legumes are frequently assumed to be less water-use efficient than plants utilizing soil mineral N, because of the high respiratory requirements for driving N2 fixation. However, since respiration is assumed not to discriminate against 13C, any differences in water-use efficiency exclusively due to respiration should not be apparent in carbon isotope discrimination () values. Our objective was to determine if the source of N (N2 fixation versus soil N) had any effect on of field-grown grain legumes grown at different elevations. Four legume species, Glycine max, Phaseolus lunatus, P. vulgaris, and Vigna unguiculata, were grown on five field sites spanning a 633 m elevational gradient on the island of Maui, Hawaii. The legumes were either inoculated with a mixture of three effective strains of rhizobia or fertilized weekly with urea at 100 kg N ha-1 in an attempt to completely suppress symbiotic N2-fixing activity. In 14 of 20 analyses of stover and 12 of 15 analyses of seed values were significantly higher (p=0.10) in the inoculated plants than the N-fertilized plants. Nitrogen concentrations were generally higher in the fertilized treatments than the inoculated treatments. The different values obtained depending on N-source may have implications in using as an indicator of water-use efficiency or yield potential of legumes.  相似文献   
158.
Root to shoot ratio of crops as influenced by CO2   总被引:1,自引:0,他引:1  
Crops of tomorrow are likely to grow under higher levels of atmospheric CO2. Fundamental crop growth processes will be affected and chief among these is carbon allocation. The root to shoot ratio (R:S, defined as dry weight of root biomass divided by dry weight of shoot biomass) depends upon the partitioning of photosynthate which may be influenced by environmental stimuli. Exposure of plant canopies to high CO2 concentration often stimulates the growth of both shoot and root, but the question remains whether elevated atmospheric CO2 concentration will affect roots and shoots of crop plants proportionally. Since elevated CO2 can induce changes in plant structure and function, there may be differences in allocation between root and shoot, at least under some conditions. The effect of elevated atmospheric CO2 on carbon allocation has yet to be fully elucidated, especially in the context of changing resource availability. Herein we review root to shoot allocation as affected by increased concentrations of atmospheric CO2 and provide recommendations for further research. Review of the available literature shows substantial variation in R:S response for crop plants. In many cases (59.5%) R:S increased, in a very few (3.0%) remained unchanged, and in others (37.5%) decreased. The explanation for these differences probably resides in crop type, resource supply, and other experimental factors. Efforts to understand allocation under CO2 enrichment will add substantially to the global change response data base.Abbreviations R:S root to shoot ratio, dry weight basis  相似文献   
159.
Burgess  D.  Baldock  J. A.  Wetzell  S.  Brand  D. G. 《Plant and Soil》1995,(1):513-522
The influences of soil surface modification (blade scarification and plastic mulching), fertilization and herbicide application on soil nutrient and organic carbon content and tree growth and foliar nutrient status were examined after seven years in a study located within the Great Lakes-St. Lawrence forest region of Canada. Plots had been planted with white pine (Pinus strobus L.) and white spruce (Picea glauca [Moench] Voss) seedlings. Light (PAR), soil moisture and temperature were monitored and recorded throughout the growing season. Forest floor and soil mineral (0–20 cm layer) samples were collected from all experimental plots, except those which had plastic mulching. Foliar samples were collected in autumn and analysed for N, P and K and storage compounds. Seedling mortality was 20% higher in unscarified plots. Combined silvicultural treatments increased productivity as much as 14 times, but scarification reduced soil carbon and nutrient capital 2–3 fold. Herbicide application reduced soil carbon by at least 20 %. Foliar nutrient, protein, starch and lipid contents in autumn were little affected by treatment. The future management of such stands in Canada probably will include more shelterwood harvesting and crop rotations, silvicultural systems that are more closely aligned with natural forest succession.  相似文献   
160.
Zoe G. Cardon 《Plant and Soil》1995,187(2):277-288
Atmospheric CO2 concentrations can influence ecosystem carbon storage through net primary production (NPP), soil carbon storage, or both. In assessing the potential for carbon storage in terrestrial ecosystems under elevated CO2, both NPP and processing of soil organic matter (SOM), as well as the multiple links between them, must be examined. Within this context, both the quantity and quality of carbon flux from roots to soil are important, since roots produce specialized compounds that enhance nutrient acquisition (affecting NPP), and since the flux of organic compounds from roots to soil fuels soil microbial activity (affecting processing of SOM).From the perspective of root physiology, a technique is described which uses genetically engineered bacteria to detect the distribution and amount of flux of particular compounds from single roots to non-sterile soils. Other experiments from several labs are noted which explore effects of elevated CO2 on root acid phosphatase, phosphomonoesterase, and citrate production, all associated with phosphorus nutrition. From a soil perspective, effects of elevated CO2 on the processing of SOM developed under a C4 grassland but planted with C3 California grassland species were examined under low (unamended) and high (amended with 20 g m–2 NPK) nutrients; measurements of soil atmosphere 13C combined with soil respiration rates show that during vegetative growth in February, elevated CO2 decreased respiration of carbon from C4 SOM in high nutrient soils but not in unamended soils.This emphasis on the impacts of carbon loss from roots on both NPP and SOM processing will be essential to understanding terrestrial ecosystem carbon storage under changing atmospheric CO2 concentrations.Abbreviations SOM soil organic matter - NPP net primary productivity - NEP net ecosystem productivity - PNPP p-nitrophenyl phosphate  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号