首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14562篇
  免费   1792篇
  国内免费   2532篇
  18886篇
  2024年   110篇
  2023年   411篇
  2022年   331篇
  2021年   320篇
  2020年   638篇
  2019年   646篇
  2018年   709篇
  2017年   702篇
  2016年   689篇
  2015年   656篇
  2014年   721篇
  2013年   1034篇
  2012年   600篇
  2011年   787篇
  2010年   501篇
  2009年   769篇
  2008年   780篇
  2007年   757篇
  2006年   695篇
  2005年   639篇
  2004年   580篇
  2003年   517篇
  2002年   493篇
  2001年   421篇
  2000年   401篇
  1999年   354篇
  1998年   325篇
  1997年   290篇
  1996年   278篇
  1995年   277篇
  1994年   268篇
  1993年   245篇
  1992年   251篇
  1991年   195篇
  1990年   191篇
  1989年   168篇
  1988年   136篇
  1987年   113篇
  1986年   98篇
  1985年   137篇
  1984年   127篇
  1983年   62篇
  1982年   110篇
  1981年   79篇
  1980年   75篇
  1979年   55篇
  1978年   45篇
  1977年   33篇
  1976年   29篇
  1975年   13篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
131.
This work investigated the feeding ecology and behaviour of gray whales in Bahía Magdalena. Underwater observations of bottom feeding were made (n=4). Skin biopsies of the gray whale had a carbon isotope value of –16.5 ± 0.1 (range from –16.4 to –16.7, n=7). Prey in Bahía Magdalena had a carbon isotope value of –18.4. Dietary enrichment from prey in Bahía Magdalena would correspond to 2 ± 0.1, whereas previously published results for prey in Alaska would result in an enrichment of 3, which suggests that whales were more likely feeding on prey from Bahía Magdalena. Carbon isotopic oscillation along the baleen plate of a stranded 1-year-old whale showed a variation in diet during the year, which suggests continual feeding during this time and corresponding to dietary sample measurements from Bahía Magdalena in winter and Alaska in summer.  相似文献   
132.
The impact of agricultural management on global warming potential (GWP) and greenhouse gas intensity (GHGI) is not well documented. A long‐term fertilizer experiment in Chinese double rice‐cropping systems initiated in 1990 was used in this study to gain an insight into a complete greenhouse gas accounting of GWP and GHGI. The six fertilizer treatments included inorganic fertilizer [nitrogen and phosphorus fertilizer (NP), nitrogen and potassium fertilizer (NK), and balanced inorganic fertilizer (NPK)], combined inorganic/organic fertilizers at full and reduced rate (FOM and ROM), and no fertilizer application as a control. Methane (CH4) and nitrous oxide (N2O) fluxes were measured using static chamber method from November 2006 through October 2009, and the net ecosystem carbon balance was estimated by the changes in topsoil (0–20 cm) organic carbon (SOC) density over the 10‐year period 1999–2009. Long‐term fertilizer application significantly increased grain yields, except for no difference between the NK and control plots. Annual topsoil SOC sequestration rate was estimated to be 0.96 t C ha?1 yr?1 for the control and 1.01–1.43 t C ha?1 yr?1 for the fertilizer plots. Long‐term inorganic fertilizer application tended to increase CH4 emissions during the flooded rice season and significantly increased N2O emissions from drained soils during the nonrice season. Annual mean CH4 emissions ranged from 621 kg CH4 ha?1 for the control to 1175 kg CH4 ha?1 for the FOM plots, 63–83% of which derived from the late‐rice season. Annual N2O emission averaged 1.15–4.11 kg N2O–N ha?1 in the double rice‐cropping systems. Compared with the control, inorganic fertilizer application slightly increased the net annual GWPs, while they were remarkably increased by combined inorganic/organic fertilizer application. The GHGI was lowest for the NP and NPK plots and highest for the FOM and ROM plots. The results of this study suggest that agricultural economic viability and GHGs mitigation can be simultaneously achieved by balanced fertilizer application.  相似文献   
133.
A mutant of Brevibacterium ammoniagenes producing large quantities of UMP and uracil is described. The mutations render bacteria braditrophic for arginine, sensitive to adenine, resistant to rifampicin and pyrimidine analogues 5-fluorouracil, 5-fluorouridine, azauracil and thiouracil. The activities of enzymes involved in the UMP biosynthesis, i.e. orotate phosphoribosyltransferase, orotate-5-monophosphate decarboxylase, dihydroorotate oxidase, are 4-, 3.5- and 4.5-fold higher in the mutant than in the parent strain when grown in minimal medium. The synthesis of these enzymes in mutant cells is not repressed in the presence of exogenous Ura. True revertants, which completely restore the wild-type phenotype, occur among the Arg+ clones. The nature of the mutation is discussed.  相似文献   
134.
定量生育期内植物光合碳在植物组织-土壤的分配规律,对于理解全球碳循环有着重要意义。采用~(13)C-CO_2脉冲标记结合室内培养,通过元素分析仪-稳定同位素联用(Flash HT-IRMS)分析植物各部分及土壤δ~(13)C值,比较了不同生育期下水稻光合碳在不同组织间的分配规律,并量化了水稻光合碳向土壤碳库的转移。结果表明:(1)水稻地上部和根系干物质量随水稻生育期的增加而呈现递增趋势,不同的生育期表现为:分蘖期拔节期抽穗期扬花期成熟期。而整个生育期的根冠比为0.2—0.4,分蘖期的根冠比最高,随着水稻生育期的增加而递减,到抽穗期以后根冠比稳定在0.2左右。(2)脉冲标记6h后,水稻地上部和地下部(根系)的δ~(13)C值在-25.52‰—-28.33‰,不同器官的δ~(13)C值存在明显分馏效应,且趋势基本一致,即茎杆(籽粒)叶片(根系);这种由于水稻生育期特性导致的各器官碳同位素分馏的现象,可用于指示不同生育期下水稻光合碳的分配和去向。(3)不同生育期~(13)C-光合碳在植物-土壤系统的分配规律不同,生长前期光合碳向根系及土壤中分配的比例高,具有较强的碳汇能力,而随生育期光合碳在根系及土壤中的分配比例呈下降趋势,但积累量不断增加。(4)不同生育期~(13)C光合碳在水稻-土壤系统中的分配比例差异明显。水稻分蘖期有近30%光合碳用于根系建成并部分通过根系分泌物进入土壤有机碳库(10%),而到成熟期则向籽粒中分配较多,而且光合碳在土壤中的分配比例也随生育期呈下降趋势。研究结果对稻田土壤有机碳循环过程和调控机制的揭示具有重要的理论意义。  相似文献   
135.
We argue that the need for a quality seed supply chain is a major bottleneck for the restoration of Chile's native ecosystems, thus supplementing the list of bottlenecks proposed by Bannister et al. in 2018. Specifically, there is a need for defining seed transfer zones, developing standards and capacities for properly collecting and storing seeds, reducing information gaps on seed physiology and longevity, and implementing an efficient seed supply chain with certification of seed origin and quality. Without such capacities, countries are unlikely to meet their restoration commitments. Although we focus on bottlenecks in Chile, the issues we raise are relevant to other countries and thus the global agenda for ecological restoration.  相似文献   
136.
Bacterial communities and metabolites in kimchi fermented under conventional conditions (CC) compared to CO2-rich environments (CO2) were analyzed. After a 20-day fermentation, lactic and acetic acid productions were 54 and 69 mM under CC, and 19 and 12 mM under CO2, respectively. The final pH of kimchi fermented under CC (CC-fermenting) and CO2 (CO2-fermenting) were 4.1 and 4.7, respectively. For bacterial communities, OTU and Chao1 indices were both 35 in fresh kimchi, 10 and 15 in CC-fermenting kimchi, and 8 and 24 in CO2-fermenting kimchi, respectively. Shannon and Simpson indices were 3.47 and 0.93 in fresh kimchi, 1.87–0.06 and 0.46–0.01 in CC-fermenting kimchi, and 1.65–0.44 and 0.63–0.12 in CO2-fermenting kimchi, respectively. Non-lactic acid bacteria were eliminated in fermenting kimchi after 12 days under CC and 6 days under CO2. I conclude that carbon dioxide can alter bacterial communities, reduce metabolite production, and improve fermented kimchi quality.  相似文献   
137.
1. Inputs of animal and plant detritus are the main energy sources for food webs in a number of isolated container systems, including discarded automobile tyres and tree holes. Containers are dominated by mosquitoes in the genera Culex and Aedes, which among other differences often engage in different foraging behaviours. We hypothesised that because Aedes feed more by browsing surfaces, whereas Culex often filter the water column, these mosquitoes would show variation in performance and differentially affect detritus. Effects of different ratios of animal and plant detritus on survival, mass, and development time for two common container mosquito species, Culex restuans L. and Aedes albopictus Skuse, were examined. We also quantified detrital contribution to biomass via isotopic and nutrient analysis and the effect of larvae on detrital decay. 2. Adult male and female mass of both species was highest with some animal detritus and lowest in only leaf detritus. Aedes albopictus survival was higher than C. restuans across most detritus ratios. 3. Aedes albopictus had higher values of 15N and in some cases 13C across all detritus ratios compared with C. restuans; A. albopictus had lower nitrogen in tissue. Aedes albopictus appeared to be more efficient at obtaining potentially limiting nutrients and had a greater overall effect on detrital decay – a possible consequence of greater foraging effort. 4. Findings further support the view that mosquito performance can be influenced by detritus type, and provide a more precise hypothesis (i.e. lower need for nitrogen) that may explain the superior competitive ability of A. albopictus over other container mosquitoes.  相似文献   
138.
Cloning of highly-secreting recombinant cells is critical for biopharmaceutical manufacturing, but faces numerous challenges including the fact that secreted protein does not remain associated with the producing cell. A fundamentally new approach was developed combining in situ capture and measurement of individual cell protein secretion followed by laser-mediated elimination of all non- and poorly-secreting cells, leaving only the highest-secreting cell in a well. Recombinant cells producing humanized antibody were cultured serum-free on a capture matrix, followed by staining with fluorescently-labeled anti-human antibody fragment. A novel, automated, high-throughput instrument (called LEAP) was used to image and locate every cell, quantify the cell-associated and secreted antibody (surrounding each cell), eliminate all undesired cells from a well via targeted laser irradiation, and then track clone outgrowth and stability. Temporarily sparing an island of helper cells around the clone of interest improved cloning efficiency (particularly when using serum-free medium), and helper cells were easily eliminated with the laser after several days. The in situ nature of this process allowed several serial sub-cloning steps to be performed within days of one another, resulting in rapid generation of clonal populations with significantly increased and more stable, homogeneous antibody secretion. Cell lines with specific antibody secretion rates of > 50 pg/cell per day (in static batch culture) were routinely obtained as a result of this cloning approach, often times representing up to 20% of the clones screened.  相似文献   
139.
To achieve long-term increases in soil organic carbon (SOC) storage, it is essential to understand the effects of carbon management strategies on SOC formation pathways, particularly through changes in microbial necromass carbon (MNC) and dissolved organic carbon (DOC). Using a 14-year field study, we demonstrate that both biochar and maize straw lifted the SOC ceiling, but through different pathways. Biochar, while raising SOC and DOC content, decreased substrate degradability by increasing carbon aromaticity. This resulted in suppressed microbial abundance and enzyme activity, which lowered soil respiration, weakened in vivo turnover and ex vivo modification for MNC production (i.e., low microbial carbon pump “efficacy”), and led to lower efficiency in decomposing MNC, ultimately resulting in the net accumulation of SOC and MNC. In contrast, straw incorporation increased the content and decreased the aromaticity of SOC and DOC. The enhanced SOC degradability and soil nutrient content, such as total nitrogen and total phosphorous, stimulated the microbial population and activity, thereby boosting soil respiration and enhancing microbial carbon pump “efficacy” for MNC production. The total C added to biochar and straw plots were estimated as 27.3–54.5 and 41.4 Mg C ha−1, respectively. Our results demonstrated that biochar was more efficient in lifting the SOC stock via exogenous stable carbon input and MNC stabilization, although the latter showed low “efficacy”. Meanwhile, straw incorporation significantly promoted net MNC accumulation but also stimulated SOC mineralization, resulting in a smaller increase in SOC content (by 50%) compared to biochar (by 53%–102%). The results address the decadal-scale effects of biochar and straw application on the formation of the stable organic carbon pool in soil, and understanding the causal mechanisms can allow field practices to maximize SOC content.  相似文献   
140.
Abstract. We present a method for estimating the construction costs of plant tissues from measurements of heat of combustion, ash content, and organic nitrogen content. The method predicts glucose equivalents, the amount of glucose required to provide carbon skeletons and reductant to synthesize a quantity of organic product. Glucose equivalents have previously been calculated from the elemental composition of tissue. We define construction cost as the amount of glucose required to provide carbon skeletons, reductant and ATP for synthesizing the organic compounds in a tissue via standard biochemical pathways. The fraction of the total construction cost of a compound or tissue (excluding costs of transporting compounds) that is reflected in its glucose equivalents is the biosynthetic efficiency ( E B). This quantity varies between 0.84 and 0.95 for tissues with a wide range of compositions. Using the new method, total construction cost can be estimated to ± 6% of the value obtained from biochemical pathway analysis.
Construction costs of leaves of three chaparral species were estimated using the proposed method and compared to previously published values, derived using different methods. Agreement among methods was generally good. Differences were probably due to a combination of inaccuracy in the estimated biosynthetic efficiency and technical difficulties with biochemical analysis, one of the older methods of determining construction cost.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号