首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8382篇
  免费   1468篇
  国内免费   2321篇
  2024年   76篇
  2023年   339篇
  2022年   251篇
  2021年   243篇
  2020年   479篇
  2019年   506篇
  2018年   571篇
  2017年   536篇
  2016年   528篇
  2015年   506篇
  2014年   527篇
  2013年   632篇
  2012年   453篇
  2011年   510篇
  2010年   382篇
  2009年   466篇
  2008年   457篇
  2007年   467篇
  2006年   452篇
  2005年   379篇
  2004年   334篇
  2003年   322篇
  2002年   323篇
  2001年   273篇
  2000年   249篇
  1999年   211篇
  1998年   199篇
  1997年   166篇
  1996年   161篇
  1995年   137篇
  1994年   138篇
  1993年   106篇
  1992年   121篇
  1991年   73篇
  1990年   75篇
  1989年   70篇
  1988年   61篇
  1987年   43篇
  1986年   48篇
  1985年   53篇
  1984年   39篇
  1983年   19篇
  1982年   46篇
  1981年   31篇
  1980年   24篇
  1979年   24篇
  1978年   19篇
  1977年   8篇
  1976年   16篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
Here, a conceptual model is presented for the development of Phytophthora disease in pedunculate oak. The model is presented using the causal loop diagram tool and gives an overview of how various abiotic and biotic factors, such as soil moisture, nutrient availability and mycorrhizal colonization, may affect the reproduction and the infective capacity of soil-borne Phytophthora species, the susceptibility of the host and subsequent disease development. It is suggested that the link between the root damage caused by Phytophthora species and overall tree vitality is in the assimilation and allocation of carbon within the plants. The potential impact of environmental factors on these processes is discussed. The model is presented with reference to scenarios related to variation in soil moisture and nutrient availability. The need for species-specific validation of the model and the implications of the model are discussed.  相似文献   
972.
Plant traits have become popular as predictors of interspecific variation in important ecosystem properties and processes. Here we introduce foliar pH as a possible new plant trait, and tested whether (1) green leaf pH or leaf litter pH correlates with biochemical and structural foliar traits that are linked to biogeochemical cycling; (2) there is consistent variation in green leaf pH or leaf litter pH among plant types as defined by nutrient uptake mode and higher taxonomy; (3) green leaf pH can predict a significant proportion of variation in leaf digestibility among plant species and types; (4) leaf litter pH can predict a significant proportion of variation in leaf litter decomposability among plant species and types. We found some evidence in support of all four hypotheses for a wide range of species in a subarctic flora, although cryptogams (fern allies and a moss) tended to weaken the patterns by showing relatively poor leaf digestibility or litter decomposability at a given pH. Among seed plant species, green leaf pH itself explained only up to a third of the interspecific variation in leaf digestibility and leaf litter up to a quarter of the interspecific variation in leaf litter decomposability. However, foliar pH substantially improved the power of foliar lignin and/or cellulose concentrations as predictors of these processes when added to regression models as a second variable. When species were aggregated into plant types as defined by higher taxonomy and nutrient uptake mode, green-specific leaf area was a more powerful predictor of digestibility or decomposability than any of the biochemical traits including pH. The usefulness of foliar pH as a new predictive trait, whether or not in combination with other traits, remains to be tested across more plant species, types and biomes, and also in relation to other plant or ecosystem traits and processes.  相似文献   
973.
The study was aimed at identifying the soil properties responsible for maize yield decline on eroded soils and at quantifying their relationship with yield. Topsoil was artificially removed to incremental depths of 0, 5, 10, 15 and 20 cm to simulate various degrees of erosion. Maize growth and yield were monitored on the plots and soil physical and chemical properties were determined after two years (4 seasons) of cultivation. Soil pH was significantly higher on the control plot and decreased with increased depth of topsoil removal. Bulk density (BD) increased with depth of topsoil removal from a mean value of 1.38 g cm−3 under control to 1.55 g cm−3 at 20 cm depth of removal, while cone index of penetrometer resistance (CI) correspondingly increased from 1.09 g cm−2 to 1.37 g cm−2. Maize yield significantly decreased in the first year from 3.2 t ha−1 on the control plot to 0.12 t ha−1 where 20 cm of topsoil was removed and correspondingly from 1.85 to 0.09 t ha−1 in the second year of cropping. Maize yield decreased exponentially with increase in depth of topsoil removal (r 2=0.99, P<0.01) with an average of 55% yield loss on the removal of just 5 cm topsoil. Soil organic carbon (SOC), BD, CI, field capacity (FC), pH and exchangeable Mg2+ were significantly correlated to maize yield parameters. However, factor analysis showed that the combination of SOC and exchangeable Mg2+ with soil physical properties (BD, FC, CI and depth of topsoil removal) explained 99% of variation in maize grain yield. The need for conservation farm practices is recommended on the soil to prevent soil degradation. Section Editor: L. Wade  相似文献   
974.
The mycorrhizal associations established between plants and fungi have multiple effects on plant growth, directly affecting stress tolerance. This work aimed to explore arbuscular mycorrhizal (AM) effects on carbon and nitrogen relationships of Aster tripolium L. and consequently on its flooding tolerance. Mycorrhizal and non-mycorrhizal juvenile plants were submitted to non-flooding and tidal flooding conditions for 56 d. Tidal flooding reduced biomass, but the presence of mycorrhiza had an ameliorating effect. The AM symbioses seem to have, like flooding, a stressful effect on A. tripolium at an early stage of plant development. However, once the plant was established, an improvement of growth performance of plants with mycorrhiza under flooding conditions was observed. The better tolerance of AM plants to flooding was mediated through an improvement of the osmotic adjustment of the plant tissues (higher concentrations of soluble sugars and proline) and through the increment of nitrogen acquisition in tidal-flooded plants.  相似文献   
975.
Land-use and land-cover strongly influence soil properties such as the amount of soil organic carbon (SOC), aggregate structure and SOC turnover processes. We studied the effects of a vegetation shift from forest to grassland 90 years ago in soils derived from andesite material on Barro Colorado Island (BCI), Panama. We quantified the amount of carbon (C) and nitrogen (N) and determined the turnover of C in bulk soil, water stable aggregates (WSA) of different size classes (<53 μm, 53–250 μm, 250–2000 μm and 2000–8000 μm) and density fractions (free light fraction, intra-aggregate particulate organic matter and mineral associated soil organic C). Total SOC stocks (0–50 cm) under forest (84 Mg C ha−1) and grassland (64 Mg C ha−1) did not differ significantly. Our results revealed that vegetation type did not have an effect on aggregate structure and stability. The investigated soils at BCI did not show higher C and N concentrations in larger aggregates, indicating that organic material is not the major binding agent in these soils to form aggregates. Based on δ13C values and treating bulk soil as a single, homogenous C pool we estimated a mean residence time (MRT) of 69 years for the surface layer (0–5 cm). The MRT varied among the different SOC fractions and among depth. In 0–5 cm, MRT of intra-aggregate particulate organic matter (iPOM) was 29 years; whereas mineral associated soil organic C (mSOC) had a MRT of 124 years. These soils have substantial resilience to C and N losses because the >90% of C and N is associated with mSOC, which has a comparatively long MRT.  相似文献   
976.
Dissolved organic carbon and nitrogen (DOC and DON) produced in the forest floor are important for ecosystem functions such as microbial metabolism, pedogenesis and pollutant transport. Past work has shown that both DOC and DON production are related to litterfall and standing stocks of C and N in the forest floor. This study, conducted in spring, 2003, investigated variation in forest floor water extractable DOC (WEDOC) and DON (WEDON) and forest floor C and N as a function of lignin, cellulose and N contained in live canopy foliage across eight Picea abies [L.] Karst stands in northern Bohemia. Based on Near Infrared Spectroscopy (NIR) analysis of foliar materials, lignin:N and cellulose:N content of the youngest needles (those produced in 2002) were positively and significantly related to WEDOC (R2 = 0.82–0.97; P<0.01) and to forest floor C:N ratio (R = 0.72–0.78; P<0.01). Foliar N was strongly and negatively related to WEDOC and C:N ratio (R = −0.91 and 0.72; P<0.05) among our study sites. WEDON was positively correlated to foliar lignin:N (R = 0.48; P<0.05; n=40). Forest floor C pools were not positively correlated with foliar lignin and cellulose and forest floor N pools were not positively correlated with foliar N. Instead, a significant negative correlation was found between forest floor N pools and foliar cellulose (R=−0.41; P<0.05), and between forest floor C pools and foliar N (R = −0.44; P<0.05). From a remote sensing standpoint, our results are important because canopy reflectance properties are primarily influenced by the most recent foliage, and it was the chemistry of the most recently produced needles that showed a stronger relationship with forest floor WEDOC and C:N ratio suggesting forest floor production of WEDOC can be calculated regionally with remote sensing.  相似文献   
977.
Bradford reactive soil protein (BRSP) is thought to correlate to glomalin, an important soil glycoprotein that promotes soil aggregate formation and may represent a significant pool of stable soil organic matter (SOM). However, more information is needed about its importance in Appalachian soils and its relationships with other soil properties. We measured BRSP in 0–20 cm soil from pastures, hayfields, cultivated fields or forest areas in southern West Virginia. Highest amounts of BRSP were found near the soil surface and decreased significantly with depth for all land uses except cultivated sites. Forest and pasture sites contained more BRSP than hayfields or cultivated fields but these differences occurred only in the 0–5 cm depth. Overall averages of C and N in BRSP represented about 4.0 and 6.5% of the total soil C and N respectively. During a 395 day soil incubation, we found CO2–C evolution rates comparable to other studies but only small changes in BRSP (<10%) including some evidence for increases during incubation. Sodium citrate, sodium pyrophosphate, and sodium oxalate recovered significantly more BRSP from soil than the other extractants we tested with highest extraction efficiencies observed for sodium citrate and pyrophosphate. Recovery of BRSP appears related to negative charge and buffering capacity of both the soil and extractant. Extractants with low negative charge had little buffering capacity and yielded little BRSP. Tannic acid appeared to increase extraction of BRSP but less soluble-N was recovered from tannin-treated samples than from untreated controls and E4/E6, the ratio of absorbance at 465 and 665 nm, decreased, evidence for the formation of larger or heavier molecules. Formation of dark-colored substances during extraction suggests the colorimetric Bradford assay may overestimate soil protein when tannins are present. Recovery of less soluble-N from soil extracts and lower E4/E6 ratios suggests tannins may bind with soil constituents themselves or form non-extractable N-containing complexes.  相似文献   
978.
Since the 1970s the area under sugarcane in Brazil has increased from 2 million to over 5 million ha (M ha), and it is expected to pass the 7 M ha mark in 2007. More than half of the cane is harvested to produce bioethanol as a fuel for light vehicles. The distilleries produce approximately 13 L of distillery waste (vinasse) for each litre of ethanol produced. In the 1980s there was considerable concern over the long-term effects of the disposal of this material (containing about 1% carbon and high in K) on cane yields if it was applied to the field. At the same time there was a growing movement to abandon the practice of pre-harvest burning and some research was showing that some Brazilian varieties of sugar cane were able to obtain significant contributions of N from plant-associated biological nitrogen fixation (BNF). For these reasons an experiment was installed on a cane plantation in the state of Pernambuco, NE Brazil to investigate the long-term effects of vinasse and N fertiliser additions and the practice of pre-harvest burning on crop and sugar yield, soil fertility parameters, N balance and soil C stocks. The results showed that over a 16-year period, trash conservation (abandonment of burning) increased cane yields by 25% from a mean of 46 to 58 Mg ha−1. Vinasse applications (80 m3 ha−1 crop−1) increased mean cane and sugar yield by 12 to 13% and the application of 80 kg N ha−1 as urea increased cane yields by 9%, but total sugar yield by less than 6% (from 7.0 to 7.4 Mg ha−1 crop−1). The total N balance for the soil/plant system when only the surface 20 cm of the soil was considered was positive in plots where no N fertiliser was added. However, the data indicated that during the 16 years of the study considerable quantities of soil organic matter were accumulated below 20 cm depth such that the N balance considering the soil to 60 cm depth was strongly positive, except where N fertiliser was added. The data indicated that there were considerable BNF inputs to the system, which was consistent with its low response to N fertiliser and low N fertiliser-use-efficiency. There were no significant effects of vinasse or urea addition, or trash conservation on soil C stocks, although the higher yields proportioned by trash conservation had potentially significant benefits for increased mitigation of CO2 emissions where the main use of the cane was for bioethanol production.  相似文献   
979.
1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high‐ than of low‐quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high‐ to low‐quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single‐species leaf packs in five streams that had natural differences in ambient P concentration (10–140 μg soluble reactive phosphorus (SRP) L?1), because of variable inputs of solute‐rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 μg SRP L?1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k‐values range: 0.0451–0.129 day?1); C. elastica (k‐values range: 0.0064–0.021 day?1); and Z. longifolia (k‐values range: 0.002–0.008 day?1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P‐stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams.  相似文献   
980.
This study was conducted to determine reciprocal effects of low to high doses of nitrogenous fertilizer (N30, N40, N50, N60 and N70 — 30, 40, 50, 60 and 70 kg ha−1 respectively) and CO2 enriched environment on C and N partitioning in soybean (Glycine max (L.) Merril cv JS-335). Plants were grown from seedling emergence to maturity inside open top chambers under ambient, AC (350±50 mol mol−1) and elevated, EC (600±50 mol mol−1) CO2 and analyzed at seedling, vegetative, flowering, pod setting and maturity stages. Soybean responded to both CO2 enrichment and N supply. Leaves, stem and root reserves at different growth stages were analyzed for total C and N contents. Consistent increase in the C contents of the leaf, stem and root was observed under EC than in AC. N contents in the different plant parts were found to be decreased under EC-grown plants specially at seedling and vegetative stage despite providing N doses to the soil. Significant increase observed for C to N dry mass ratio under EC in the root, stems and leaves at seedling and vegetative stage was decreased in the middle and later growth stages possibly due to combined impact of N doses to the soil and increased N2 fixing activities due to EC conditions. Critical analysis of our findings reveals that the composition and partitioning of C and N of soybean under variable rates of N supply and CO2 enrichment alter according to need under altered metabolic process. These changes eventually may lead to alteration in uptake of not only N but other essential nutrients also under changing atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号