首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50517篇
  免费   18313篇
  国内免费   2082篇
  2024年   74篇
  2023年   337篇
  2022年   254篇
  2021年   680篇
  2020年   3173篇
  2019年   4673篇
  2018年   5037篇
  2017年   4980篇
  2016年   4709篇
  2015年   4556篇
  2014年   4472篇
  2013年   4963篇
  2012年   4188篇
  2011年   4383篇
  2010年   3770篇
  2009年   2712篇
  2008年   2864篇
  2007年   2296篇
  2006年   2284篇
  2005年   1916篇
  2004年   1551篇
  2003年   1649篇
  2002年   1445篇
  2001年   1103篇
  2000年   644篇
  1999年   449篇
  1998年   210篇
  1997年   154篇
  1996年   163篇
  1995年   151篇
  1994年   147篇
  1993年   121篇
  1992年   131篇
  1991年   73篇
  1990年   75篇
  1989年   64篇
  1988年   68篇
  1987年   47篇
  1986年   45篇
  1985年   62篇
  1984年   35篇
  1983年   19篇
  1982年   41篇
  1981年   32篇
  1980年   27篇
  1979年   22篇
  1978年   20篇
  1976年   16篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
221.
Projected depletions in the stratospheric ozone layer will result in increases in solar ultraviolet-B radiation (290–320 nm) reaching the earth's surface, These increases will likely occur in concert with other environmental changes such as increases in atmospheric carbon dioxide concentrations. Currently very little information is available on the effectiveness of UV-B radiation within a CO2-enriched atmosphere, and this is especially true for trees. Loblolly pine (Pinus taeda L.) seedlings were grown in a factorial experiment at the Duke University Phytotron with either 0, 8.8 or 13.8 kJ m−2 of biologically effective UV-B radiation (UV-BBE). The CO2 concentrations used were 350 and 650 μmol mol−1. Measurements of chlorophyll fluorescence were made at 5-week intervals and photosynthetic oxygen evolution and leaf pigments were measured after 22 weeks, prior to harvest. The results of this study demonstrated a clear growth response to CO2 enrichment but neither photosynthetic capacity nor quantum efficiency were altered by CO2. The higher UV-B irradiance reduced total biomass by about 12% at both CO2 levels but biomass partitioning was altered by the interaction of CO2 and UV-B radiation. Dry matter was preferentially allocated to shoot components by UV-B radiation at 350 μmol mol−1 CO2 and towards root components at 650 μmol mol−1 CO2. These subtle effects on biomass allocation could be important in the future to seedling establishment and competitive interactions in natural as well as agricultural communities.  相似文献   
222.
Carbon dioxide consumption during soil development   总被引:5,自引:1,他引:4  
Carbon is sequestered in soils by accumulation of recalcitrant organic matter and by bicarbonate weathering of silicate minerals. Carbon fixation by ecosystems helps drive weathering processes in soils and that in turn diverts carbon from annual photosynthesis-soil respiration cycling into the long-term geological carbon cycle. To quantify rates of carbon transfer during soil development in moist temperate grassland and desert scrubland ecosystems, we measured organic and inorganic residues derived from the interaction of soil biota and silicate mineral weathering for twenty-two soil profiles in arkosic sediments of differing ages. In moist temperate grasslands, net annual removal of carbon from the atmosphere by organic carbon accumulation and silicate weathering ranges from about 8.5 g m–2 yr–1 for young soils to 0.7 g M–2 yr–1 for old soils. In desert scrublands, net annual carbon removal is about 0.2 g m–2 yr–1 for young soils and 0.01 g m–2 yr–1 for old soils. In soils of both ecosystems, organic carbon accumulation exceeds CO2 removal by weathering, however, as soils age, rates of CO2 consumption by weathering accounts for greater amounts of carbon sequestration, increasing from 2% to 8% in the grassland soils and from 2% to 40% in the scrubland soils. In soils of desert scrublands, carbonate accumulation far outstrips organic carbon accumulation, but about 90% of this mass is derived from aerosolic sources that do not contribute to long-term sequestration of atmospheric carbon dioxide.  相似文献   
223.
We report here on the characterization and isolation of two ecotypes of Chlorella vulgaris Beyerinck that coexist in wastewater reservoirs. One ecotype (C1) contains high amounts of chlorophyll b, is capable of autotrophic growth, and can utilize only a few organic solutes for growth. The second ecotype (C2) contains low amounts of chlorophyll b, requires vitamin B12, and can support its growth with a broad range of organic compounds. Of the two ecotypes, the latter showed slower growth rates when light was the sole source of energy. Cells of C2-type Chlorella attained higher photosynthetic activities than C1-type cells at saturating irradiances. However, their low chlorophyll b content and lower light utilization efficiency suggest that C2-type Chlorella contains relatively low amounts of light-harvesting antennae, a disadvantage in severely light-limited ecosystems like wastewater reservoirs. We hypothesize that the two Chlorella types coexist by adopting different lifestyles: C1-type cells rely largely on their photosynthetic potential for energy conservation and growth, whereas C2-type cells may exploit their heterotrophic properties for this purpose.  相似文献   
224.
225.
In lyophilized needles of Norway spruce ( Picea abies [L.] Karsten) and starting from bud break, we determined enzyme activities (sucrose phosphate synthase [SPS; EC 2.4,1.14]. sucrose synthase [SS; EC 2.4,1.13]. acid invertase [AI; EC 3.2,1.26]) and intermediates (starch, sucrose, glucose, fructose; fructose 6-phosphate, fructose 2.6-bisphosphate [F26BP]) of carbohydrate metabolism together with needle weight, shoot length, chlorophyll and protein. For up to 110 days after bud break, samples were taken twice a week from about 25-year-old trees under field conditions. At least three periods can be distinguished during needle maturation. During the first period (up to 45 days after bud break) Al showed the highest extractable activity. This coincided with very high levels of F26BP (up to 11 pmol [mg dry weight]−1) and a transient increase of starch in parallel to a decrease of sucrose. The interval between 45 and 70 days after bud break was characterized by high SS activity (ratio of fructose/glucose >1), much decreased levels of F26BP (down to below 1 pmol [mg dry weight]−1), and a pronounced increase in the dry weight/fresh weight ratio. In parallel, starch declined and soluble carbohydrates increased. Finally, needle maturation was characterized by decreasing SS and continuously increasing SPS activities, so that the ratio of SPS/SS increased more than 6-fold. AI. however, did not decline with maturation. Changes in pool sizes of metabolites and enzyme activities (AI. SPS) are consistent with current concepts on sink/source transition. SS is obviously important with regard to the synthesis of structural polysaccharides.  相似文献   
226.
227.
The purpose of this paper is to describe the effects of CO2 and N treatments on soil pCO2, calculated CO2 efflux, root biomass and soil carbon in open-top chambers planted with Pinus ponderosa seedlings. Based upon the literature, it was hypothesized that both elevated CO2 and N would cause increased root biomass which would in turn cause increases in both total soil CO2 efflux and microbial respiration. This hypothesis was only supported in part: both CO2 and N treatments caused significant increases in root biomass, soil pCO2, and calculated CO2 efflux, but there were no differences in soil microbial respiration measured in the laboratory. Both correlative and quantitative comparisons of CO2 efflux rates indicated that microbial respiration contributes little to total soil CO2 efflux in the field. Measurements of soil pCO2 and calculated CO2 efflux provided inexpensive, non-invasive, and relatively sensitive indices of belowground response to CO2 and N treatments.  相似文献   
228.
Soil samples from forest and agricultural sites in three areas of southwest France were collected to determine the effect of forest conversion to continuous intensive corn cropping with no organic matter management on soil organic carbon (C) content. Soils were humic loamy soils and site characteristics that may affect soil C were as uniform as possible (slope, elevation, texture, soil type, vegetation). Three areas were selected, with adjacent sites of various ages of cultivation (3 to 35 yr), and paired control forest sites. The ploughed horizon (0-Dt cm) and the Dt-50 cm layer were collected at each agricultural site. In forest sites, each 10 cm layer was collected systematically down to 1 meter depth. Carbon concentrations were converted to total content to a given depth as the product of concentration, depth of sample and bulk density, and expressed in units of kg m-2. For each site and each sampled layer, the mineral mass of soil was calculated, in order to base comparisons on the same soil mass rather than the same depth. The pattern of C accumulation in forest soils showed an exponential decrease with depth. Results suggested that soil organic carbon declined rapidly during the first years of cultivation, and at a slower rate thereafter. This pattern of decrease can be fitted by a bi-exponential model assuming that initial soil organic carbon can be separated into two parts, a very labile pool reduced during the first rapid decline and more refractory fractions oxidizing at a slower rate. Sampling to shallow depths (0-Dt cm) resulted in over-estimation of the rate of carbon release in proportion to the initial amount of C, and in under-estimation of the total loss of C with age. The results for the 0–50 cm horizon indicated that losses of total carbon average about 50% in these soils, ranging in initial carbon content from 19 to 32.5 kg m-2. Carbon release to the atmosphere averaged 0.8 kg m-2 yr-1 to 50 cm depth during the first 10 years of cultivation. The results demonstrate that temperate soils may also be an important source of atmospheric carbon, when they are initially high in carbon content and then cultivated intensively with no organic matter management.  相似文献   
229.
Increased biomass production in terrestrial ecosystems with elevated atmospheric CO2 may be constrained by nutrient limitations as a result of increased requirement or reduced availability caused by reduced turnover rates of nutrients. To determine the short-term impact of nitrogen (N) fertilization on plant biomass production under elevated CO2, we compared the response of N-fertilized tallgrass prairie at ambient and twice-ambient CO2 levels over a 2-year period. Native tallgrass prairie plots (4.5 m diameter) were exposed continuously (24 h) to ambient and twice-ambient CO2 from 1 April to 26 October. We compared our results to an unfertilized companion experiment on the same research site. Above- and belowground biomass production and leaf area of fertilized plots were greater with elevated than ambient CO2 in both years. The increase in biomass at high CO2 occurred mainly aboveground in 1991, a dry year, and belowground in 1990, a wet year. Nitrogen concentration was lower in plants exposed to elevated CO2, but total standing crop N was greater at high CO2. Increased root biomass under elevated CO2 apparently increased N uptake. The biomass production response to elevated CO2 was much greater on N-fertilized than unfertilized prairie, particularly in the dry year. We conclude that biomass production response to elevated CO2 was suppressed by N limitation in years with below-normal precipitation. Reduced N concentration in above- and belowground biomass could slow microbial degradation of soil organic matter and surface litter, thereby exacerbating N limitation in the long term.  相似文献   
230.
Vaughan  D.  Cheshire  M. V.  Ord  B. G. 《Plant and Soil》1994,160(2):185-191
The duckweed Lemna gibba required light and a suitable energy source such as sucrose, glucose or fructose, for maximum growth in culture. The requirement for light was relatively unimportant and the plants grew well in a photon flux density of only 52 μmol m-2s-1 PAR. The uptake and incorporation of uniformly labelled 14C-glucose into fronds was related only to the concentration of the sugar. When incubated with soil, labelled L. gibba behaved in a manner similar to that of labelled ryegrass roots which had been produced by a more elaborate technique using a 14CO2 labelled atmosphere. During incubation with soil for 224 days the L. gibba material (specific activity 6133 Bq mg-1 d. wt) lost 64% of its radioactivity as 14CO2 and ryegrass (specific activity 6634 Bq mg-1 d. wt) lost 49%. Alkaline extracted humic and fulvic acids from soil had specific activities for the L. gibba incubation of 3409 and 407 Bq mg-1 solid and for ryegrass roots of 4609 and 546 Bq mg-1 solid respectively. The production of 13C or 14C-labelled L. gibba can be undertaken using only simple equipment producing material the specific radioactivity of which can be controlled by adjusting the activity of the sugar energy source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号