首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52039篇
  免费   4560篇
  国内免费   5468篇
  2024年   86篇
  2023年   1018篇
  2022年   1024篇
  2021年   1491篇
  2020年   1885篇
  2019年   2324篇
  2018年   2211篇
  2017年   1826篇
  2016年   1856篇
  2015年   1867篇
  2014年   2733篇
  2013年   3516篇
  2012年   2184篇
  2011年   2693篇
  2010年   2783篇
  2009年   2528篇
  2008年   2455篇
  2007年   2679篇
  2006年   2423篇
  2005年   2365篇
  2004年   2281篇
  2003年   1910篇
  2002年   1609篇
  2001年   1320篇
  2000年   1074篇
  1999年   1115篇
  1998年   955篇
  1997年   888篇
  1996年   898篇
  1995年   878篇
  1994年   817篇
  1993年   738篇
  1992年   728篇
  1991年   579篇
  1990年   524篇
  1989年   477篇
  1988年   453篇
  1987年   368篇
  1986年   357篇
  1985年   364篇
  1984年   326篇
  1983年   178篇
  1982年   320篇
  1981年   232篇
  1980年   192篇
  1979年   142篇
  1978年   109篇
  1977年   84篇
  1976年   79篇
  1975年   30篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The effects of ultraviolet light on cellular DNA replication were evaluated in an asynchronous Chinese hamster ovary cell population. BrdUrd incorporation was measured asa function of cell-cycle position, using an antibody against bromodeoxyuridine (BrdUrd) and dual parameter flow cytometric analysis. After exposure to UV light, there was an immediate reduction ( 50%) of BrdUrd incorporation in S phase cells, with most of the cells of the population being affected to a similar degree. At 5 h after UV, a population of cells with increased BrdUrd appeared as cells that were in G1 phase at the time of irradiation entered S phase with apparently increased rates of DNA synthesis. For 8 h after UV exposure, incorporation of BrdUrd by the original S phase cells remained constant, whereas a significant portion of original G1 cells possessed rates of BrdUrd incorporation surpassing even those of control cells. Maturation rates of DNA synthesized immediately before or after exposure by alkaline elution, were similar. Therefore, DNA synthesis measured in the short pulse by anti-BrdUrd fluorescence after exposure to UV light was representative of genomic replication. Anti-BrdUrd measurements after DNA damage provide quantitative and qualitative information of cellular rates of DNA synthesis especially in instances where perturbation of cell-cycle progression is a dominant feature of the damage. In this study, striking differences of subsequent DNA synthesis rates between cells in G1 or S phase at the time of exposure were revealed.  相似文献   
992.
993.
994.
995.
996.
We examined the content and isotopic composition of nitrogen within soils of a juniper woodland and found that a cryptobiotic crust composed of cyanobacteria, lichens, and mosses was the predominant source of nitrogen for this ecosystem. Disturbance of the crust has resulted in considerable spatial variability in soil nitrogen content and isotopic composition; intercanopy soils were significantly depleted in nitrogen and had greater abundance of 15N compared to intra-canopy soils. Variations in the 15N/14N ratio for inter- and intra-canopy locations followed similar Rayleigh distillation curves, indicating that the greater 15N/14N ratios for inter-canopy soils were due to relatively greater net nitrogen loss. Coverage of cryptobiotic crusts has been reduced by anthropogenic activities during the past century, and our results suggest that destruction of the cryptobiotic crust may ultimately result in ecosystem degradation through elimination of the predominant source of nitrogen input.  相似文献   
997.
Nutrient resorption was measured in an actinorhizal nitrogen-fixing shrub,Comptonia peregrina, for five years in the understory of a deciduous oak forest in Rhode Island, USA. Mean resorption of nitrogen was extremely inefficient (11%) compared to most deciduous species (50%+), yet resorption of phosphorus was efficient (53%) and comparable to other species. Of the seven additional nutrients studied, only copper (6%) and zinc (10%) were resorbed from senescing leaves. Resorption of nitrogen (5%–20%) and phosphorus (40%–71%) varied significantly among years. Copper was resorbed from leaves in three years and accreted into leaves in two years. Five-year resorption means differed among individual genets by as much as a factor of 2.5 for nitrogen, and 1.3 for phosphorus. Resorption of nitrogen, copper, and zinc were highly correlated, yet resorption of phosphorus remained autonomous from other nutrients. The ecophysiological tradeoffs inComptonia which have resulted in the cooccurence of actinorhizal nitrogen fixation, inefficient nitrogen resorption, and efficient phosphorus resorption suggest that plant nutrient status does have an impact on resorption efficiency and that the evolution of nutrient conservation strategies is nutrient-specific.  相似文献   
998.
Plants often respond to elevated atmospheric CO2 levels with reduced tissue nitrogen concentrations relative to ambient CO2-grown plants when comparisons are made at a common time. Another common response to enriched CO2 atmospheres is an acceleration in plant growth rates. Because plant nitrogen concentrations are often highest in seedlings and subsequently decrease during growth, comparisons between ambient and elevated CO2-grown plants made at a common time may not demonstrate CO2-induced reductions in plant nitrogen concentration per se. Rather, this comparison may be highlighting differences in nitrogen concentration between bigger, more developed plants and smaller, less developed plants. In this study, we directly examined whether elevated CO2 environments reduce plant nitrogen concentrations independent of changes in plant growth rates. We grew two annual plant species. Abutilon theophrasti (C3 photosynthetic pathway) and Amaranthus retroflexus (C4 photosynthetic pathway), from seed in glass-sided growth chambers with atmospheric CO2 levels of 350 mol·mol–1 or 700 mol·mol–1 and with high or low fertilizer applications. Individual plants were harvested every 2 days starting 3 days after germination to determine plant biomass and nitrogen concentration. We found: 1. High CO2-grown plants had reduced nitrogen concentrations and increased biomass relative to ambient CO2-grown plants when compared at a common time; 2. Tissue nitrogen concentrations did not vary as a function of CO2 level when plants were compared at a common size; and 3. The rate of biomass accumulation per rate of increase in plant nitrogen was unaffected by CO2 availability, but was altered by nutrient availability. These results indicate that a CO2-induced reduction in plant nitrogen concentration may not be due to physiological changes in plant nitrogen use efficiency, but is probably a size-dependent phenomenon resulting from accelerated plant growth.  相似文献   
999.
Chlorophyll loss in leaves of cut flowers of alstroemeria (Alstroemeria pelegrina L. cv. Westland) was rapid in darkness and counteracted by irradiation and treatment of the flowers with gibberellic acid (GA3). The mechanism of the effect of GA3 under dark conditions was investigated. The content of various carbohydrates in the leaves under dark conditions rapidly decreased; this was not influenced by treatment with GA3. indicating that the loss of carbohydrates in the leaves did not induce the loss of chlorophyll. Placing the cut flowers in various solutions of organic and inorganic nutrients exhibited no significant effect on the retention of chlorophyll in leaves of dark-senescing flowers. The total nitrogen content in leaves of dark-senescing cut flowers decreased with time. Leaves of GA3-treated flowers retained more nitrogen. In contrast, the buds of GA3-treated flowers retained less nitrogen during senescence in the dark than control buds. To investigate whether GA3 affects export of assimilates from the leaf to various parts of control and GA3-treated flowers, we labelled one leaf with radioactive carbon dioxide. 14C-assimilates accumulated preferentially in the flowers, in which the relative specific activity of the youngest floral buds was highest. No significant differences were observed in the distribution of 14C-labelled compounds between the buds of control and GA3-treated flowers. To establish the importance of source-sink relations for the loss of leaf chlorophyll we removed the flower buds (i. e. the strongest sink) from the cut flowers. This removal only slightly delayed chlorophyll loss as compared to the large delay caused by GA3-treatment. In addition, detached leaf tips exhibited chlorophyll loss in the dark, which was delayed by GA3-treatment in a fashion comparable with that in flowers. Together these data demonstrate that interactions of the leaves with other plant organs are not essential for chlorophyll loss during senescence in the dark. Additionally, we have found no evidence that GA3 delays the loss of chlorophyll by affecting the transport of nutrients within the cut flowers.  相似文献   
1000.
Possible mechanisms of afterripening in Xanthium seeds   总被引:1,自引:0,他引:1  
Breaking dormancy in some seeds requires a period of dry storage. In the seeds of Xanthium pennsylvanicum Wallr., the process of afterripening proceeds optimally at water contents between 7 and 14%: this range of dehydration can be identified with water binding region 2, in which water is bound with low enthalpy. At water contents below 7%. Seeds remained primarily dormant over 3 years. Attempts to alter the afterripening with atmospheres of elevated nitrogen showed no effect. and with oxygen there was no consistent effect. There were no changes is osmotic value of the seed sap, or in its sugar or amino acid contents. We speculate that afterripening in Xanthium may involve some nonenxymatic reactions which remove substances which inhibit germination. Candidates for these reactions include the Amadori and Maillard reactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号