首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   255篇
  免费   30篇
  国内免费   9篇
  2024年   2篇
  2023年   5篇
  2022年   9篇
  2021年   6篇
  2020年   12篇
  2019年   12篇
  2018年   11篇
  2017年   11篇
  2016年   7篇
  2015年   23篇
  2014年   10篇
  2013年   31篇
  2012年   8篇
  2011年   9篇
  2010年   12篇
  2009年   16篇
  2008年   13篇
  2007年   22篇
  2006年   13篇
  2005年   12篇
  2004年   15篇
  2003年   7篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1999年   4篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
71.
Cyanovirin-N (CVN) is a novel cyanobacterial protein that selectively binds with nanomolar affinities the mammalian oligosaccharides Man(8) and Man(9). Consequently, CVN potently blocks HIV entry through highly avid carbohydrate-mediated interactions with the HIV-envelope glycoprotein gp120, and is under preclinical investigation as an anti-HIV microbicide. CVN contains two non-overlapping carbohydrate-binding sites that bind the disaccharide Manalpha(1-2)Manalpha (which represents the terminal disaccharide of all three arms of Man(9)) with low to sub-micromolar affinities. The solution structure of a 1:2 CVN:Manalpha(1-2)Manalpha complex revealed that CVN recognizes the stacked conformation of Manalpha(1-2)Manalpha through a deep hydrophilic-binding pocket on one side of the protein (site 2) and a semi-circular cleft on the other (site 1). With the prominent exception of the C1 hydroxyl group of the reducing mannopyranose ring, the bound disaccharide is positioned so that each hydroxyl group is involved in a direct or water-mediated hydrogen bond to the polar or charged side-chains comprising the binding pocket. Thus, to determine whether the next-most reducing mannopyranose ring will augment CVN affinity and selectivity, we have characterized by NMR and ITC the binding of CVN to three synthetic trisaccharides representing the full-length D1, D2 and D3 arms of mammalian oligomannosides. Our findings demonstrate that site 1 is able to discriminate between the three related trisaccharides methyl Manalpha(1-2)Manalpha(1-2)Man, methyl Manalpha(1-2)Manalpha(1-3)Man and methyl Manalpha(1-2)Manalpha(1-6)Man with remarkable selectivity, and binds these trisaccharides with K(A) values ranging from 8.1x10(3)M(-1) to 6.6x10(6)M(-1). Site 2 is less selective in that it binds all three trisaccharides with similar K(A) values ranging from 1.7 to 3.7(+/-0.3)x10(5)M(-1), but overall binds these trimannosides with higher affinities than site 1. The diversity of pathogenic organisms that display alpha(1-2)-linked mannosides on their cell surfaces suggests a broad defensive role for CVN in its cyanobacterial source.  相似文献   
72.
MINT: a Molecular INTeraction database   总被引:26,自引:0,他引:26  
  相似文献   
73.
葛慧华  刘婷  杨纯  张光亚 《微生物学报》2023,63(8):3252-3263
【目的】β-1,4-木聚糖酶是木聚糖降解的关键酶之一,嗜冷嗜酸木聚糖酶在功能性低聚木糖的制备中具有重要作用,但相关报道较少。【方法】从太平洋火色杆菌(Flammeovirga pacifica)菌株WPAGA1基因组发掘到一条新型的木聚糖酶序列,经基因合成、质粒构建和表达,并对其进行分离纯化及酶学性质研究。【结果】该木聚糖酶(Xyl4513)具有2个保守结构域,一个属于糖苷水解酶11家族(glycoside hydrolase family 11,GH11)催化模块(Xyl4513-T),另一个属于碳水化合物结合模块(carbohydrate-binding module,CBM) 60家族(CBM4513),这是一种非常罕见的GH11家族木聚糖酶含有CBM的现象。纯化后的Xyl4513最适反应温度和pH值分别为30℃、3.0,这一特性说明Xyl4513为嗜冷嗜酸β-1,4-木聚糖酶;而截短的木聚糖酶Xyl4513-T最适反应温度和pH值分别为20℃、4.0,且催化效率(kcat/Km)较前者下降了20%,说明CBM4513对酶稳定性和催化效...  相似文献   
74.
A high-throughput, single-source laser scribing method exploiting a transparent conducting oxide (TCO) indirect liftoff mechanism is developed to produce serially interconnected perovskite solar modules. The TCO-based indirect liftoff mechanism relies solely on laser absorption in the front transparent electrode material reducing thermal damage to the overlying layers and allowing for fast scribing speeds with low-cost μs-pulse duration fiber laser systems. Minimal resistive power losses are observed with the method compared to conventional ablative laser scribes, maintaining the power conversion efficiencies of small-area devices (≈0.2 cm2) across significantly larger deposition areas (≈1 cm2). Demonstrating > 3 m s−1 processing speeds, TCO-based liftoff provides the highest throughput laser scribing method for thin-film photovoltaic devices produced on glass/TCO substrates, capable of processing large-area perovskite solar modules at a manufacturing scale.  相似文献   
75.
76.
We developed capillary affinity electrophoresis (CAE) to analyze the molecular interaction between carbohydrate chains and proteins in solution state. A mixture of oligosaccharides derived from a glycoprotein was labeled with 8-aminopyrene-1,3,6-trisulfonate (APTS), and used as glycan library without isolation. Interaction of a carbohydrate-binding protein with each oligosaccharide in the mixture could be simultaneously observed, and relative affinities of oligosaccharides toward the protein were accurately determined. In this study, we applied CAE to detect the presence of lectins in some plants (Japanese elderberry bark and tulip bulb). In the crude extract of the elderberry bark, binding activity toward sialo-carbohydrate chains could be easily detected. We also examined the presence of lectins in the crude extract of tulip bulbs and determined the detailed carbohydrate-binding specificity of Tulipa gesneriana agglutinin (TGA), one of the lectins from tulip bulbs. Kinetic studies demonstrated that TGA showed novel carbohydrate-binding specificity and preferentially recognized triantennary oligosaccharides with Gal residues at nonreducing termini and a Fuc residue linked through alpha(1-6) linkage at chitobiose portion of the reducing termini but not tetraantennary carbohydrates. The results described here indicate that CAE will be a valuable method for both screening of lectins in natural sources and determination of their detailed carbohydrate-binding specificities.  相似文献   
77.
Natural cellulose exists as a composite of different forms, which have historically been broadly characterized as "crystalline" or "amorphous". The recognition of both of these forms of cellulose by the carbohydrate-binding modules (CBM) of microbial glycoside hydrolases is central to natural and efficient biotechnological conversion of plant cell wall biomass. There is increasing evidence that, at least some, individual binding modules target distinct and different regions of non-crystalline "amorphous" cellulose. Competition experiments show that CBM28 modules do not compete with CBM17 modules when binding to non-crystalline cellulose. The structure of the BspCBM28 (http://afmb.cnrs-mrs.fr/CAZY/) module from the Bacillus sp. 1139 family GH5 endoglucanase, comprising a 191 amino acid protein, has therefore been determined at 1.4A resolution using single isomorphous replacement with anomalous scattering methods. The structure reveals a "beta-jelly roll" topology, with high degree of similarity to the structure of CBM17 domains. Sequence and structural conservation strongly suggests that these two families of domains have evolved through gene duplication and subsequent divergence. The ligand-binding site "topographies" of CBMs from families 28, 17 and 4 begins to shed light on the differential recognition of non-crystalline cellulose by multi-modular plant cell wall-degrading enzymes.  相似文献   
78.
The beta-glucan-binding protein (GBP) of soybean (Glycine max L.) has been shown to contain two different activities. As part of the plasma membrane-localized pathogen receptor complex, it binds a microbial cell wall elicitor, triggering the activation of defence responses. Additionally, the GBP is able to hydrolyze beta-1,3-glucans, as present in the cell walls of potential pathogens. The substrate specificity, the mode of action, and the stereochemistry of the catalysis have been elucidated. This defines for the first time the inverting mode of the catalytic mechanism of glycoside hydrolases belonging to family 81.  相似文献   
79.
Cellobiohydrolase A (CbhA) from Clostridium thermocellum is composed of an N-terminal carbohydrate-binding domain 4 (CBD4), an immunoglobulin-like domain (Ig), a glycoside hydrolase 9 (GH9), X1(1) and X1(2) domains, a CBD3, and a dockerin domain. All domains, except the Ig, bind Ca2+. The following constructs were made: X1(2), X1(1)X1(2), CBD3, X1(1)X1(2)-CBD3, Ig, GH9, Ig-GH9, Ig-GH9-X1(1)X1(2), and Ig-GH9-X1(1)X1(2)-CBD3. Interactions between domains in (1) buffer, (2) with Ca2+, or (3) ethylenediaminetetraacetic acid (EDTA) were studied by differential scanning calorimetry. Thermal unfoldings of all constructs were irreversible. Calcium increased T(d) and cooperativity of unfolding. Multi-domain constructs exhibited more cooperative unfolding in buffer and in the presence of EDTA than did individual domains. They denatured by mechanism simpler than expected from their modular architecture. The results indicate that domain coupling in thermophilic proteins constitutes a significant stabilizing factor.  相似文献   
80.
Adsorption of a carbohydrate on solid phase is the necessary stage of the immunosorbent assay (ELISA) and analogous methods of the study of carbohydrate-protein interaction. Usually physical adsorption on polystyrene requires a high concentration of conjugated carbohydrate and, thus, enormous consumption of it. In this study, we explored two approaches allowing more rational use of oligosaccharide (Glyc). The first of them is based on the covalent immobilization of neoglycoconjugates on the NH2-modified polystyrene; the second one is based on the elevated adherence of high m.w. neoglycoconjugates to polystyrene. Covalent immobilization of polyacrylamide conjugates, Glyc-PAA, provided a possibility to solve the problem, but the nonspecific binding of antibodies in ELISA proved to be unacceptably high. At the same time, the increase of the Glyc-PAA m.w. from 30 kDa to 2,000 kDa allowed a 10–20 fold decrease of its consumption, when using physical adsorption, whereas the assay background remained at the low level. The amount of 2,000 kDa Glyc-PAA that is sufficient for the coating of a standard 96-well plate corresponds to the nanomole level of oligosaccharide, this providing a possibility to use saccharides that are available in a very limited amount when studying the carbohydrate-protein interaction with solid-phase techniques. Published in 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号