首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1628篇
  免费   222篇
  国内免费   44篇
  1894篇
  2024年   5篇
  2023年   32篇
  2022年   33篇
  2021年   74篇
  2020年   66篇
  2019年   114篇
  2018年   85篇
  2017年   83篇
  2016年   96篇
  2015年   90篇
  2014年   106篇
  2013年   130篇
  2012年   76篇
  2011年   80篇
  2010年   65篇
  2009年   101篇
  2008年   97篇
  2007年   84篇
  2006年   60篇
  2005年   72篇
  2004年   48篇
  2003年   50篇
  2002年   40篇
  2001年   34篇
  2000年   27篇
  1999年   26篇
  1998年   9篇
  1997年   11篇
  1996年   6篇
  1995年   10篇
  1994年   12篇
  1993年   8篇
  1992年   13篇
  1991年   5篇
  1990年   8篇
  1989年   8篇
  1988年   2篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   2篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有1894条查询结果,搜索用时 0 毫秒
181.
A mark‐resight analysis under Pollock's robust design was applied to Indo‐Pacific bottlenose dolphins Tursiops aduncus in the Swatch‐of‐No‐Ground (SoNG) submarine canyon, Bangladesh, during the winter seasons of 2005–2009. Information from sightings of photo‐identified individuals (1,144) and unmarked individuals generated abundance estimates of 1,701 (95% confidence interval [CI]= 1,533–1,888), 1,927 (95% CI = 1,851–2,006), 2,150 (95% CI = 1,906–2,425), and 2,239 (95% CI = 1,985–2,524) individuals for seasons 1–4, respectively. This makes the population among the largest assessed of the species. Overall apparent survival was estimated as 0.958 (95% CI = 0.802–0.992). Interseasonal probabilities of transitioning to an unobservable state were estimated as 0.045, 0.363, and 0.300 for years 1–2, 2–3, and 3–4, respectively, and the overall probability of remaining in an unobservable state was 0.688. These probabilities, together with an apparent increase in abundance during the study period, indicate that the identified dolphins are part of a larger superpopulation moving throughout a more extensive geographic area. Of the photo‐identified dolphins, 28.2% exhibited injuries related to entanglements with fishing gear. This implies a strong potential for fatal interactions that could jeopardize the conservation status of the population, which otherwise appears favorable.  相似文献   
182.
183.
184.
Very little information is known of the recently described Microcebus tavaratra and Lepilemur milanoii in the Daraina region, a restricted area in far northern Madagascar. Since their forest habitat is highly fragmented and expected to undergo significant changes in the future, rapid surveys are essential to determine conservation priorities. Using both distance sampling and capture-recapture methods, we estimated population densities in two forest fragments. Our results are the first known density and population size estimates for both nocturnal species. In parallel, we compare density results from four different approaches, which are widely used to estimate lemur densities and population sizes throughout Madagascar. Four approaches (King, Kelker, Muller and Buckland) are based on transect surveys and distance sampling, and they differ from each other by the way the effective strip width is estimated. The fifth method relies on a capture-mark-recapture (CMR) approach. Overall, we found that the King method produced density estimates that were significantly higher than other methods, suggesting that it generates overestimates and hence overly optimistic estimates of population sizes in endangered species. The other three distance sampling methods provided similar estimates. These estimates were similar to those obtained with the CMR approach when enough recapture data were available. Given that Microcebus species are often trapped for genetic or behavioral studies, our results suggest that existing data can be used to provide estimates of population density for that species across Madagascar.  相似文献   
185.
Titi monkeys (genus Callicebus) are small-bodied platyrrhines that supplement their predominantly frugivorous diet with variable amounts of leaves, seeds, and/or arthropod prey. Notable interspecific variation in the amount of insect prey in the diet has been observed in Callicebus, ranging from 0% to 20%. In this study, I investigate the degree and type of prey foraging in a little-known species, Callicebus oenanthe inhabiting a fragmented, secondary forest on the foothills of the Andes in northern Peru. I present data on prey type, prey search and capture techniques, substrate/vegetation use, foraging height, prey capture efficiency, and seasonal variation of insect prey foraging in one group of C. oenanthe observed from January to August 2005. Insect prey accounted for 22% of the diet, the highest amount reported for any Callicebus species to date, and insects from at least six different orders were included. C. oenanthe was mainly an investigative forager of hidden prey, manipulating easy-to-open substrates such as rolled up leaves, and hunted ant swarms and larger insects opportunistically. Insect foraging was predominant during the dry season (26%) and decreased during the wet season (13%). The study group foraged mostly in the understory (2-6 m) within vine-laden shrubs and trees, which may conform to an anti-predator strategy of crypticity. Overall the group had an 83% insect capture success rate. These data suggest that insect prey is an important part of the diet of C. oenanthe and may be especially notable during periods of resource scarcity. This study adds to the knowledge concerning insect prey foraging in Callicebus, which can have an important role in defining ecological strategies in the selection of secondary protein food resources within a given ecosystem.  相似文献   
186.
WILEY M. KITCHENS 《Ibis》2012,154(3):554-565
The degradation of habitats due to human activities is a major topic of interest for the conservation and management of wild populations. There is growing evidence that the Florida Everglades ecosystem continues to suffer from habitat degradation. After a period of recovery in the 1990s, the Snail Kite Rostrhamus sociabilis population suffered a substantial decline in 2001 and has not recovered since. Habitat degradation has been suggested as one of the primary reasons for this lack of recovery. As a consequence of the continued degradation of the Everglades, we hypothesized that this would have led to increased movement of juvenile Kites over time, as a consequence of the need to find more favourable habitat. We used multistate mark‐recapture models to compare between‐site movement probabilities of juvenile Snail Kites in the 1990s (1992–95; which corresponds to the period before the decline) and 2000s (2003–06; after the decline). Our analyses were based on an extensive radiotelemetry study (266 birds tracked monthly over the entire state of Florida for a total period of 6 years) and considered factors such as sex and age of marked individuals. There was evidence of increased movement of juvenile Snail Kites during the post‐decline period from most of the wetland regions used historically by Kites. Higher movement rates may contribute to an increase in the probability of mortality of young individuals and could contribute to the observed declines.  相似文献   
187.
The dispersal of marked, irradiated olive fruit flies originating from a hybrid laboratory strain was studied in an olive groove located in the arid regions of southern Israel. Release–recapture experiments (eight in total) were conducted throughout a period of 5 months (July–December 2008). In each experiment, ca. 5000 flies were released. Recapture of flies was conducted using a grid of 30 yellow sticky traps set in expanding semicircles from the centre of release. Service of traps was conducted 3 and 15 days after the release. Fly quality and adult food type (only sucrose and protein + sucrose) before release was also investigated. Results point at an average dispersal distance of marked, irradiated olive flies of ca. 50 m. Pre‐release adult diet did not affect dispersal ability. Fly recovery averaged ca. 3.5% during summer and ca. 1.5% during autumn. Most of the recovery concentrated during the first 3 days after releases, suggesting low survival of the released flies afterwards. As inferred from circular statistics, direction of dispersal was non‐random with a significant directionality to the north‐west. Results are discussed in view of environmental temperatures and wind direction.  相似文献   
188.
More than 95% of orb‐weaving spider species ensure prey capture success by producing viscous threads equipped with gluey droplets. However, this trap may bear serious risks for the web‐inhabiting spider as well. The obvious question, how a spider avoids getting stuck in its own capture spiral, has gained little scientific attention up till now. In 1905, the French naturalist Jean‐Henry Fabre concluded from anecdotal observation that orb‐weaving spiders protect themselves by a fatty surface coating. Here, we test this hypothesis by indirectly measuring the force necessary to detach an autotomized spider’s leg from the capture spiral of its own web (here called ‘index of adhesion’, IOA). Three groups of legs, each of the species Araneus diadematus Clerck, 1757 and Larinioides sclopetarius (Clerck, 1757), were tested. One was left untreated, one was washed with distilled water (H2O), and one was washed with the organic solvent carbon disulphide (CS2). In both species, we found a weak IOA between the spider leg and the gluey capture spiral in untreated and water‐washed legs without significant differences between the two. The IOA approximately doubled, when spider legs had been washed with carbon disulphide prior to measurement, that is, the CS2‐washed legs stuck significantly more strongly than the untreated and water‐washed legs. These results provide indirect evidence for a protective anti‐adhesive organic coating on the spider’s body surface and so support Fabre’s hypothesis.  相似文献   
189.
Protein–peptide interactions are a common occurrence and essential for numerous cellular processes, and frequently explored in broad applications within biology, medicine, and proteomics. Therefore, understanding the molecular mechanism(s) of protein–peptide recognition, specificity, and binding interactions will be essential. In this study, we report the first detailed analysis of antibody–peptide interaction characteristics, by combining large‐scale experimental peptide binding data with the structural analysis of eight human recombinant antibodies and numerous peptides, targeting tryptic mammalian and eukaryote proteomes. The results consistently revealed that promiscuous peptide‐binding interactions, that is, both specific and degenerate binding, were exhibited by all antibodies, and the discovery was corroborated by orthogonal data, indicating that this might be a general phenomenon for low‐affinity antibody–peptide interactions. The molecular mechanism for the degenerate peptide‐binding specificity appeared to be executed through the use of 2–3 semi‐conserved anchor residues in the C‐terminal part of the peptides, in analogue to the mechanism utilized by the major histocompatibility complex–peptide complexes. In the long‐term, this knowledge will be instrumental for advancing our fundamental understanding of protein–peptide interactions, as well as for designing, generating, and applying peptide specific antibodies, or peptide‐binding proteins in general, in various biotechnical and medical applications.  相似文献   
190.
Honey bees (Apis mellifera L.) are eusocial insects and well known for their complex division of labor and associative learning capability1, 2. The worker bees spend the first half of their life inside the dark hive, where they are nursing the larvae or building the regular hexagonal combs for food (e.g. pollen or nectar) and brood3. The antennae are extraordinary multisensory feelers and play a pivotal role in various tactile mediated tasks4, including hive building5 and pattern recognition6. Later in life, each single bee leaves the hive to forage for food. Then a bee has to learn to discriminate profitable food sources, memorize their location, and communicate it to its nest mates7. Bees use different floral signals like colors or odors7, 8, but also tactile cues from the petal surface9 to form multisensory memories of the food source. Under laboratory conditions, bees can be trained in an appetitive learning paradigm to discriminate tactile object features, such as edges or grooves with their antennae10, 11, 12, 13. This learning paradigm is closely related to the classical olfactory conditioning of the proboscis extension response (PER) in harnessed bees14. The advantage of the tactile learning paradigm in the laboratory is the possibility of combining behavioral experiments on learning with various physiological measurements, including the analysis of the antennal movement pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号