全文获取类型
收费全文 | 3219篇 |
免费 | 305篇 |
国内免费 | 408篇 |
专业分类
3932篇 |
出版年
2024年 | 4篇 |
2023年 | 42篇 |
2022年 | 43篇 |
2021年 | 54篇 |
2020年 | 102篇 |
2019年 | 89篇 |
2018年 | 99篇 |
2017年 | 81篇 |
2016年 | 101篇 |
2015年 | 113篇 |
2014年 | 113篇 |
2013年 | 139篇 |
2012年 | 72篇 |
2011年 | 127篇 |
2010年 | 128篇 |
2009年 | 128篇 |
2008年 | 186篇 |
2007年 | 203篇 |
2006年 | 179篇 |
2005年 | 180篇 |
2004年 | 152篇 |
2003年 | 144篇 |
2002年 | 132篇 |
2001年 | 130篇 |
2000年 | 123篇 |
1999年 | 101篇 |
1998年 | 96篇 |
1997年 | 124篇 |
1996年 | 84篇 |
1995年 | 67篇 |
1994年 | 49篇 |
1993年 | 72篇 |
1992年 | 56篇 |
1991年 | 50篇 |
1990年 | 51篇 |
1989年 | 44篇 |
1988年 | 50篇 |
1987年 | 39篇 |
1986年 | 39篇 |
1985年 | 33篇 |
1984年 | 35篇 |
1983年 | 26篇 |
1982年 | 17篇 |
1981年 | 13篇 |
1980年 | 11篇 |
1979年 | 4篇 |
1978年 | 5篇 |
1976年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有3932条查询结果,搜索用时 15 毫秒
101.
Aquaporins and plant water balance 总被引:4,自引:0,他引:4
Kaldenhoff R Ribas-Carbo M Sans JF Lovisolo C Heckwolf M Uehlein N 《Plant, cell & environment》2008,31(5):658-666
The impact of aquaporin function on plant water balance is discussed. The significance of these proteins for root water uptake, water conductance in the xylem, including embolism refilling and the role of plant aquaporins in leaf physiology, is described. Emphasis is placed on certain aspects of water stress reactions and the correlation of aquaporins to abscisic acid as well as on the relation of water and CO2 permeability in leaves. 相似文献
102.
Jasmonate‐mediated stomatal closure under elevated CO2 revealed by time‐resolved metabolomics 下载免费PDF全文
Sisi Geng Biswapriya B. Misra Evaldo de Armas David V. Huhman Hans T. Alborn Lloyd W. Sumner Sixue Chen 《The Plant journal : for cell and molecular biology》2016,88(6):947-962
Foliar stomatal movements are critical for regulating plant water loss and gas exchange. Elevated carbon dioxide (CO2) levels are known to induce stomatal closure. However, the current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report metabolomic responses of Brassica napus guard cells to elevated CO2 using three hyphenated metabolomics platforms: gas chromatography‐mass spectrometry (MS); liquid chromatography (LC)‐multiple reaction monitoring‐MS; and ultra‐high‐performance LC‐quadrupole time‐of‐flight‐MS. A total of 358 metabolites from guard cells were quantified in a time‐course response to elevated CO2 level. Most metabolites increased under elevated CO2, showing the most significant differences at 10 min. In addition, reactive oxygen species production increased and stomatal aperture decreased with time. Major alterations in flavonoid, organic acid, sugar, fatty acid, phenylpropanoid and amino acid metabolic pathways indicated changes in both primary and specialized metabolic pathways in guard cells. Most interestingly, the jasmonic acid (JA) biosynthesis pathway was significantly altered in the course of elevated CO2 treatment. Together with results obtained from JA biosynthesis and signaling mutants as well as CO2 signaling mutants, we discovered that CO2‐induced stomatal closure is mediated by JA signaling. 相似文献
103.
Matyssek R Bahnweg G Ceulemans R Fabian P Grill D Hanke DE Kraigher H Osswald W Rennenberg H Sandermann H Tausz M Wieser G 《Plant biology (Stuttgart, Germany)》2007,9(2):163-180
Databases are needed for the ozone (O(3)) risk assessment on adult forest trees under stand conditions, as mostly juvenile trees have been studied in chamber experiments. A synopsis is presented here from an integrated case study which was conducted on adult FAGUS SYLVATICA trees at a Central-European forest site. Employed was a novel free-air canopy O(3) fumigation methodology which ensured a whole-plant assessment of O(3) sensitivity of the about 30 m tall and 60 years old trees, comparing responses to an experimental 2 x ambient O(3) regime (2 x O(3), max. 150 nl O(3) l (-1)) with those to the unchanged 1 x ambient O(3) regime (1 x O(3)=control) prevailing at the site. Additional experimentation on individual branches and juvenile beech trees exposed within the forest canopy allowed for evaluating the representativeness of young-tree and branch-bag approaches relative to the O(3) sensitivity of the adult trees. The 2 x O(3) regime did not substantially weaken the carbon sink strength of the adult beech trees, given the absence of a statistically significant decline in annual stem growth; a 3 % reduction across five years was demonstrated, however, through modelling upon parameterization with the elaborated database. 2 x O(3) did induce a number of statistically significant tree responses at the cell and leaf level, although the O(3) responsiveness varied between years. Shade leaves displayed an O(3) sensitivity similar to that of sun leaves, while indirect belowground O(3) effects, apparently mediated through hormonal relationships, were reflected by stimulated fine-root and ectomycorrhizal development. Juvenile trees were not reliable surrogates of adult ones in view of O(3) risk assessment. Branch sections enclosed in (climatized) cuvettes, however, turned out to represent the O(3) sensitivity of entire tree crowns. Drought-induced stomatal closure decoupled O(3) intake from O(3) exposure, as in addition, also the "physiologically effective O(3) dose" was subject to change. No evidence emerged for a need to lower the "Critical Level for Ozone" in risk assessment of forest trees, although sensitive tree parameters did not necessarily reflect a linear relationship to O(3) stress. Exposure-based concepts tended to overestimate O(3) risk under drought, which is in support of current efforts to establish flux-related concepts of O(3) intake in risk assessment. 相似文献
104.
J. R. Evans 《Planta》1986,167(3):351-358
Photosynthesis in two cultivars of Triticum aestivum was compared with photosynthesis in two lines having the same nuclear genomes but with cytoplasms derived from T. boeoticum. The in-vitro specific activity of ribulose-1,5-bisphosphate carboxylase (RuBPCase; EC 4.1.1.39) isolated from lines with T. boeoticum cytoplasm was only 71% of that of normal T. aestivum. By contrast, the RuBPCase activities calculated from the CO2-assimilation rate at low partial pressures of CO2, p(CO2), were the same for all lines for a given RuBPCase content. This indicates that both types of RuBPCase have the same turnover numbers in-vivo of 27.5 mol CO2·(mol enzyme)–1·s–1 (23°). The rate of CO2 assimilation measured at normal p(CO2), p
a
=340 bar, and high irradiance could be quantitatively predicted from the amount of RuBPCase protein. The maximum rate of RuBP regeneration could also predict the rate of CO2 assimilation at normal ambient conditions. Therefore, the maximum capacities for RuBP carboxylation and RuBP regeneration appear to be well-balanced for normal ambient conditions. As photosynthetic capacity declined with increasing leaf age, the capacities for RuBP carboxylation and RuBP regeneration declined in parallel.Abbreviations PAR
photosynthetically active radiation
- RuBP(Case)
ribulose-1,5-bisphosphate (carboxylase) 相似文献
105.
106.
We report phosphorylated and ubiquitinated aggregates of TAR DNA binding protein of 43 kDa (TDP-43) in SH-SY5Y cells similar to those in brains of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitinated inclusions (FTLD-U). Two candidate sequences for the nuclear localization signal were examined. Deletion of residues 78-84 resulted in cytoplasmic localization of TDP-43, whereas the mutant lacking residues 187-192 localized in nuclei, forming unique dot-like structures. Proteasome inhibition caused these to assemble into phosphorylated and ubiquitinated TDP-43 aggregates. The deletion mutants lacked the exon skipping activity of cystic fibrosis transmembrane conductance regulator (CFTR) exon 9. Our results suggest that intracellular localization of TDP-43 and proteasomal function may be involved in inclusion formation and neurodegeneration in TDP-43 proteinopathies. 相似文献
107.
林冠截留是森林生态水文的重要环节,SWAT (Soil and Water Assessment Tool)模型对其模拟过程还较为粗糙,为了在流域水文模拟中更精细的刻画林冠截留过程从而得到更佳的模拟结果,以SWAT模型为基础,使用半理论林冠截留模型(Gash模型)与SWAT模型进行耦合,以天山林区为研究区对SWAT模型林冠截留模块进行优化改进。通过对改进前后的模拟结果进行对比分析,结果表明:1) SWAT模型和SWAT-Gash模型的R2分别为0.59-0.83和0.65-0.86,NSE值分别为0.58-0.82和0.63-0.85,两种模型PBIAS为7.2%-17.1%,证明SWAT-Gash模型具有更好的适用性;2)相较于出山口径流数据,SWAT模型和SWAT-Gash模型的RMSD值分别为3.49-7.80 m3/s和3.22-4.68 m3/s,SWAT-Gash模型在校准期和验证期的皮尔逊相关系数分别为0.93和0.81,高于SWAT模型的0.91和0.77;3)基于分位数回归(QR)的不确定性分析表明,SWAT模型和SWAT-Gash模型验证期的P因子分别为0.93和0.96,R因子为1.26和1.19,95%不确定性置信区间平均宽度分别为13.50 m3/s和12.86 m3/s;4) SWAT模型与SWAT-Gash模型在验证期的月平均地表径流量分别为6.55 m3/s和8.50 m3/s,表明在该流域内原始SWAT模型会高估林冠截留量。以天山北坡中段林区为例对云杉森林的林冠截留进行精细化模拟,虽然对模型输入数据要求提高,林冠截留数据的收集增加了模型模拟的不确定性,但对本研究区基于物理过程的水文模拟精度提升明显,改进后模型与出山口实测径流数据一致性更强,可以为天山林区小流域水资源管理提供更可靠的依据。 相似文献
108.
Arabidopsis ANGUSTIFOLIA3 (AN3) is associated with the promoter of CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) to regulate light‐mediated stomatal development 下载免费PDF全文
Lai‐Sheng Meng Cong Li Meng‐Ke Xu Xu‐Dong Sun Wen Wan Xiao‐Ying Cao Jin‐Lin Zhang Kun‐Ming Chen 《Plant, cell & environment》2018,41(7):1645-1656
Light signals are perceived by multiple photoreceptors that converge to suppress the RING E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) for the regulation of stomatal development. Thus, COP1 is a point of integration between light signaling and stomatal patterning. However, how light signaling is collected into COP1 for the production and spacing of stomata is still unknown. Here, we report that the loss‐of‐function mutant of ANGUSTIFOLIA3 (AN3) delays asymmetric cell division, which leads to decreased stomatal index. Furthermore, overexpression of AN3 accelerates asymmetric cell division, which results in clusters of stomata. In addition, the stomatal development through AN3 regulation is mediated by light signaling. Finally, we find that an3 is a light‐signaling mutant, and that AN3 protein is light regulated. Self‐activation by AN3 contributes to the control of AN3 expression. Thus, AN3 is a point of collection between light signaling and stomatal patterning. Target‐gene analysis indicates that AN3 is associated with COP1 promoter for the regulation of light‐controlling stomatal development. Together, these components for regulating stomatal development form an AN3–COP1–E3 ubiquitin ligase complex, allowing the integration of light signaling into the production and spacing of stomata. 相似文献
109.
Sheng-Wei Chang Jack Wellmerling Xiaoli Zhang Rachael E. Rayner Wissam Osman Sara Mertz Amal O. Amer Mark E. Peeples Prosper N. Boyaka Estelle Cormet-Boyaka 《Biochimica et Biophysica Acta (BBA)/General Subjects》2018,1862(9):1988-1994
Background
Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function.Methods
Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR.Results
THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression.Conclusions and general significance
THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells. 相似文献110.
Pro-inflammatory effects of Burkholderia cepacia on cystic fibrosis respiratory epithelium 总被引:1,自引:0,他引:1
Fink J Steer JH Joyce DA McWilliam AS Stewart GA 《FEMS immunology and medical microbiology》2003,38(3):273-282
Burkholderia cepacia causes pulmonary infection with high mortality in cystic fibrosis (CF) patients which is likely to involve interaction with respiratory epithelium. In this study the pro-inflammatory properties of B. cepacia were examined using a range of respiratory epithelial cell lines. B. cepacia and cell-free culture supernatants were used to stimulate cell lines with (SigmaCFTE29o- and IB3) and without (A549) the CF transmembrane conductance regulator mutation (CFTR), together with corrected cell lines (C38 and S9). Interleukin (IL)-6 and IL-8, but not GM-CSF or IL-1beta, were released from all the cell lines whereas PGE(2) (prostaglandin E(2)) was released from the A549, IB3 and S9 cell lines only. Nuclear factor (NF)-kappaB activation preceded cytokine release and suppression of NF-kappaB activity diminished cytokine release. These studies indicated that B. cepacia secretory products are potent pro-inflammatory agents for respiratory epithelium and suggest functional CFTR is not required for cytokine or prostanoid responses. 相似文献