首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43029篇
  免费   17299篇
  国内免费   15篇
  2024年   1篇
  2023年   9篇
  2022年   23篇
  2021年   444篇
  2020年   2802篇
  2019年   4330篇
  2018年   4597篇
  2017年   4577篇
  2016年   4282篇
  2015年   4148篇
  2014年   4053篇
  2013年   4411篇
  2012年   3805篇
  2011年   3976篇
  2010年   3468篇
  2009年   2297篇
  2008年   2465篇
  2007年   1876篇
  2006年   1869篇
  2005年   1560篇
  2004年   1233篇
  2003年   1345篇
  2002年   1154篇
  2001年   858篇
  2000年   416篇
  1999年   254篇
  1998年   2篇
  1997年   9篇
  1996年   14篇
  1995年   13篇
  1994年   9篇
  1993年   20篇
  1992年   15篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1985年   2篇
  1983年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
Portable meters and simplified gas Chromatographic (GC) techniques were investigated for monitoring volatile hydrocarbon (HC), CO2, and O2, concentrations in groundwater, exhaust gases, and soil vapor during in situ remediation using soil vapor extraction (SVE) and air sparging (AS). Results of groundwater samples analyzed in‐house using a headspace technique compared well to split samples analyzed by a certified analytical laboratory (r2 = 0.94). SVE exhaust gas HC and CO2 concentrations measured using a GT201 portable HC/O2 meter and a RA‐411A meter (GasTech), respectively, were highly correlated with in‐house laboratory GC analyses (r2 = 0.91). O2 concentrations fell in a small range and meter analyses were not well correlated with laboratory analyses. Results of soil gas monitoring were not as well correlated as those for exhaust gases for HC, CO2, or O2, perhaps due to environmental conditions such as changes in relative humidity or the wider range of soil gas values. Overall, the meters were good indicators of vapor contamination, they greatly simplified estimates of total HC mass removal, and they allowed estimates of the biological contribution to contaminant removal during the remediation process.  相似文献   
122.
An effective groundwater monitoring system can be implemented by the combined utilization of cone penetrometer (CPT), HydroPunch® sampling, and borehole geophysical methods. The combined techniques provide a cost‐effective method for the design of a groundwater monitoring system for geologists or hydrogeologists assessing a site. With the relatively high costs associated with determining groundwater quality for site assessments, coupled with regulatory agency compliance, these combined methods can provide an effective edge in an increasingly competitive environmental industry. CPT combined with HydroPunch sampling can delineate the horizontal and vertical extent and concentration of a contaminant plume, define the extent and thickness of a free product plume, define soil and aquifer characteristics, and aid in the proper selection of well location and screen placement. The use of borehole geophysics further enhances the interpretation provided from the CPT. The interpretation of borehole geophysics provides additional information about the deposition regime of the area of investigation and a more detailed investigation of the stratigraphy. The CPT and HydroPunch can be used in unconsolidated sediments, and HydroPunch sampling can be combined with a hollow‐stem auger system. Borehole geophysics can be run in almost any environment. CPT and borehole geophysics provide information on specific lithologic characteristics necessary to obtain a groundwater sample from vertically separated aquifers. The HydroPunch can obtain a discrete, chemically representative groundwater sample from the targeted aquifer. CPT and borehole geophysics can also be used to determine lithology and for correlation of equivalent stratas from one borehole or well to the next. Borehole geophysical interpretation also provides a means of determining not only the stratigraphy and lithology but also the aquifer parameters and the type of fluids in the aquifer. Hydrogeologic and geologic data obtained from using these three methods can be employed to maximize the cost‐effectiveness and design efficiency of a groundwater monitoring system. Proper location of wells and screened interval placements are determined by a coherent design process rather than by random chance. Two studies demonstrating the combined applications of CPT, HydroPunch, and borehole geophysics for the design and placement of groundwater monitoring wells are presented in the following discussion.  相似文献   
123.
124.
1. Changes in the arthropod community structure can be attributed to differences in constitutively expressed plant traits or those that change depending on environmental conditions such as herbivory. Early‐season herbivory may have community‐wide effects on successive insect colonisation of host plants and the identity of the initially inducing insect may determine the direction and strength of the effects on the dynamics and composition of the associated insect community. 2. Previous studies have addressed the effect of early infestation with a chewing herbivore. In the present study, the effect of early infestation was investigated with a phloem‐feeding aphid [Brevicoryne brassicae L. (Hemiptera, Aphididae)] on the insect community associated with three wild cabbage (Brassica oleracea L.) populations, which are known to differ in defence chemistry, throughout the season in field experiments. 3. Aphid infestation had asymmetric effects on the associated insect community and only influenced the abundance of the natural enemies of aphids, but not that of chewing herbivores and their natural enemies. The effect size of aphid infestation further depended on the cabbage population. 4. Aphid feeding has been previously reported to promote host‐plant quality for chewing herbivores, which has been attributed to antagonism between the two major defence signalling pathways controlled by the hormones salicylic acid (SA) and jasmonic acid (JA), respectively. Our results show no effects of early infestation by aphids on chewing herbivores, suggesting the absence of long‐term JA–SA antagonism. 5. Investigating the effects of the identity of an early‐season coloniser and genotypic variation among plant populations on insect community dynamics are important in understanding insect–plant community ecology.  相似文献   
125.
126.
1. Changes in one prey species' density can indirectly affect the abundance of another prey species if a shared predator eats both species. Sometimes, indirect effects occur when prey straddle habitats, including when riparian predator populations grow in response to emergent aquatic insects and increase predation on terrestrial prey. However, predators may largely switch to aquatic insects or become satiated, reducing predation on terrestrial prey. 2. To determine the net indirect effect of aquatic insects on terrestrial arthropods via generalist spider predators, a field experiment was conducted mimicking midge influx and a wolf spider numerical response inside enclosures near an Icelandic lake. Lab mesocosms were also used to assess per capita rates of spider predation u nder differing levels of midge abundance. 3. Midges always decreased sentinel prey predation, but this effect increased with predator density. When midges were absent, predation increased 30% at a high spider density, but predation was equal between spider treatments when midges were present. In situ arthropods showed no effect of midge or spider treatments, although non‐significant abundance patterns were observed congruent with sentinel prey results. 4. In lab mesocosms, prey survivorship increased ≥50% where midges were present and rapidly saturated; the addition of 5, 20, 50, and 100 midges equivalently reduced spider predation, supporting predator distraction rather than satiation as the root cause. 5. The present results demonstrate a strong positive indirect effect of midges and broadly support the concept that predator responses to alternative prey are a major influence on the magnitude and direction of predator‐mediated indirect effects.  相似文献   
127.
Trillium camschatcense is a herbaceous perennial plant distributed in Hokkaido and northern Honshu, Japan. Geographical variations in the breeding system (partial selfing or obligate outcrossing) are reported in the populations of Hokkaido. We isolated six polymorphic microsatellite loci from this species. The number of allele per locus ranged from four to 12, whereas the expected heterozygosities ranged from 0.69 to 0.83. These markers may allow further investigations to reveal the evolutionary and ecological processes of mating system in T. camschatcense.  相似文献   
128.
129.
Body size affects almost every aspect of the biology of a species. According to the ‘resource rule’, decreasing resource availability (e.g. prey density) will lead to a reduction in body size or, alternatively, a decline in mass‐independent energy expenditure. In the present study, we provide a test of this hypothesis, assessing the effect of significantly decreasing prey density on endangered African wild dog (Lycaon pictus) body size and energy expenditure over a 20‐year period. As predicted from the ‘resource rule’, decreasing resource availability resulted in energetic re‐allocation: wild dogs' body size decreased significantly (both shorter and slimmer), whereas our fitness‐related measure of energy expenditure (i.e. litter size) remained constant over time. A phenotypic change of up to 17% within 20 years, as found in the present study, appears to be unprecedented in a nonharvested large mammal, thus advancing the emerging field of eco‐evolutionary dynamics. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 8–12.  相似文献   
130.
The H2 is an obligate by-product of N-fixation. Recycling of H2 through uptake hydrogenase (Hup) inside the root nodules of leguminous plants is often considered an advantage for plants. However, many of the rhizobium-legume symbioses found in nature, especially those used in agriculture are shown to be Hup, with the plants releasing H2 produced by nitrogenase activity from root nodules into the surrounding rhizosphere. Recent studies have suggested that, H2 induces plant-growth-promoting rhizobacteria, which may explain the widespread of Hup symbioses in spite of the low energy efficiency of such associations. Wild legumes grown in Nova Scotia, Canada, were surveyed to determine if any plant-growth characteristics could give an indication of Hup choice in leguminous plants. Out of the plants sampled, two legumes, Securigera varia and Vicia cracca, showed Hup+ associations. Securigera varia exhibited robust root structure as compared with the other plants surveyed. Data from the literature and the results from this study suggested that plants with established root systems are more likely to form the energy-efficient Hup+ symbiotic relationships with rhizobia. Conversely, Hup associations could be beneficial to leguminous plants due to H2-oxidizing plant-growth-promoting rhizobacteria that allow plants to compete successfully, early in the growing season. However, some nodules from V. cracca tested Hup+, while others were Hup. This was similar to that observed in Glycine max and Pisum sativum, giving reason to believe that Hup choice might be affected by various internal and environmental factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号