首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   0篇
  国内免费   4篇
  58篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2011年   5篇
  2009年   6篇
  2008年   2篇
  2007年   8篇
  2006年   4篇
  2005年   4篇
  2004年   3篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
排序方式: 共有58条查询结果,搜索用时 0 毫秒
21.
胚胎小肠Cajal细胞的发育研究   总被引:4,自引:1,他引:4  
目的研究人胚胎小肠cajal细胞的发育变化规律。方法采用全层铺片结合切片的免疫细胞化学技术。结果Cajal细胞呈酪氨酸激酶受体(Kit)和波形蛋白(vinlentin)免疫反应阳性。在胚胎发育早期,cajal细胞较少,为单层,稀疏分布于肌间神经丛周围,细胞为梭形,可见两个短而小的突起,未见分支;随着胎龄的增加,Cajal细胞数量增多,胞体增大,突起伸长,并出现分支。此时,肌间神经丛周围的Cajal细胞出现两层,其长轴彼此垂直,分别平行于环行肌和纵行肌。与此同时环行肌层内亦可见少许Cajal细胞;出生前,肌间神经丛部位的Cajal细胞接近成熟,两层细胞的突起进一步增多、伸长,彼此间形成与成人相似的完整的细胞网络。此时深肌丛附近亦可见少量Cajal细胞。结论人的小肠Cajal细胞发育有一定的时间顺序,即肌间神经丛周围最先出现,肌内次之,深肌丛较晚,出生前肌间神经丛周围的Cajal细胞已经接近成熟。这种发育演变若发生异常,可能导致某些胃肠动力障碍性疾病。  相似文献   
22.
Stem cell factor (SCF) has been suggested to be indispensable for the development of neural crest cells into melanocytes because Steel mutant mice (i.e., Sl/Sf1) have no pig-mented hairs. On the other hand, it has been demonstrated that the addition of endothelin 3 (ET-3) or TPA to neural crest cell cultures can induce melanocyte differentiation without addition of extrinsic SCF. In this study, we excluded the influence of intrinsic SCF by using SI/SI mouse embryos to study more precisely the effects of natural cytokines, such as extrinsic soluble SCF or ET-3, or chemical reagents, such as TPA or cholera toxin. We found that SCF is supplied within the wild-type neural crest explants and that ET-3 cannot induce melanocyte differentiation or proliferation without SCF. These results indicate that SCF plays a critical role in survival or G1/S entry of melanocyte progenitors and that SCF initially stimulates their proliferation and then ET-3 accelerates their proliferation and differentiation. TPA has the ability to elicit neural crest cell differentiation into melanocytes without exogenously added SCF but it is not as effective as SCF because many more melanocytes developed in the wild-type neural crest explants cultured with TPA.  相似文献   
23.
Interstitial Cajal-like cells in human gallbladder   总被引:6,自引:0,他引:6  
We describe here an interstitial Cajal-like cell type (ICLC) in human gallbladder, resembling the archetypal enteric interstitial cells of Cajal. Gallbladder ICLC were demonstrated in fresh preparations (tissue cryosections) using methylene-blue, and fixed specimens in Epon semi-thin sections stained with toluidine blue or transmission electron microscopy (TEM). The positive diagnosis of gallbladder ICLC was further verified by immunohistochemistry: CD117/c-kit, CD34, and another 16 antigens: vimentin, desmin, nestin, α-smooth muscle actin, NK-1, S-100, PGP-9.5, tau protein, chromogranin A, NSE, GFAP, CD1a, CD62-P, CD68, estrogen and progesterone receptors. Double immunostaining was performed for CD117, CD34 and CD117 and nestin, respectively. In fresh specimens, the spatial density of gallbladder ICLC was 100–110 cells/mm2. ICLC mainly appeared beneath the epithelium and in muscularis (about 7%, and ∼5%, respectively). In toto, ICLC represent in gallbladder ∼5.5% of subepithelial cells. TEM showed that diagnostic criteria were fulfilled by ICLC. Moreover, TEM indicated that the main ultrastructural distinctive feature for ICLC, the cell processes, develop into the characteristic shape at a relatively early stage of development. It remains to be established if, in humans, ICLC are involved in gallbladder (dis)functions (e.g. pace-making, secretion (auto-, juxta- and/or paracrine), intercellular signaling, or stone formation). M. E. Hinescu and C. Ardeleanu contributed equally to this study.  相似文献   
24.
Human skeletal muscle tissue displays specific cellular architecture easily damaged during individual existence, requiring multiple resources for regeneration. Congruent with local prerequisites, heterogeneous muscle stem cells (MuSCs) are present in the muscle interstitium. In this study, we aimed to characterize the properties of human muscle interstitial cells that had the characteristic morphology of telocytes (TCs). Immunocytochemistry and immunofluorescence showed that cells with TC morphology stained positive for c-kit/CD117 and VEGF. C-kit positive TCs were separated with magnetic-activated cell sorting, cultured in vitro and expanded for study. These cells exhibited high proliferation capacity (60% expressed endoglin/CD105 and 80% expressed nuclear Ki67). They also exhibited pluripotent capacity limited to Oct4 nuclear staining. In addition, 90% of c-kit positive TCs expressed VEGF. C-kit negative cells in the MuSCs population exhibited fibroblast-like morphology, low trilineage differential potential and negative VEGF staining. These results suggested that c-kit/CD117 positive TCs represented a unique cell type within the MuSC niche.  相似文献   
25.
Using an embryoid body (EB) culture system, we developed a functional organ-like cluster, a “gut”, from mouse embryonic stem (ES) cells (ES gut). Each ES gut exhibited various types of spontaneous movements. In these spontaneously contracting ES guts, dense distributions of interstitial cells of Cajal (ICC) (c-kit, a transmembrane receptor that has tyrosine kinase activity, positive cells; gut pacemaker cells) and smooth muscle cells were discernibly identified, but enteric neural networks were not identified. In the present study, we succeeded in forming dense enteric neural networks by a 5-HT4-receptor (SR4) agonist, mosapride citrate (1–10 μM) added only during EB formation. Addition of an SR4-antagonist, GR113808 (10 μM) abolished the SR4-agonist-induced formation of enteric neural networks. The SR4-agonist (1 μM) up-regulated the expression of mRNA of SR4 and the SR4-antagonist abolished this upregulation. 5-HT per se exerted similar effects to those of SR4-agonist, though less potent. These results suggest SR4-agonist differentiated enteric neural networks, mediated via activation of SR4 in the ES gut.  相似文献   
26.
We show the existence of a novel type of interstitial cell-telocytes (TC) in mouse trachea and lungs. We used cell cultures, vital stainings, as well as scanning electron microscopy (SEM), transmission electron microscopy (TEM) and immunohistochemistry (IHC). Phase contrast microscopy on cultured cells showed cells with unequivocally characteristic morphology of typical TC (cells with telopodes-Tp). SEM revealed typical TC with two to three Tp-very long and branched cell prolongations. Tp consist of an alternation of thin segments (podomers) and thick segments (podoms). The latter accommodate mitochondria (as shown by Janus Green and MitoTracker), rough endoplasmic reticulum and caveolae. TEM showed characteristic podomers and podoms as well as close relationships with nerve endings and blood capillaries. IHC revealed positive expression of TC for c-kit, vimentin and CD34. In conclusion, this study shows the presence in trachea and lungs of a peculiar type of cells, which fulfils the criteria for TC.  相似文献   
27.
为探讨c-kit蛋白在蝗虫卵子发生过程中的表达和调控机制,应用免疫组织化学和统计分析等方法对网翅蝗科(直翅目,蝗总科)3种蝗虫卵子发生过程中8个代表性阶段c-kit蛋白表达进行观测和比较,3种蝗虫分别为:绿牧草蝗 Omocestus viridulus(Linnaeus),素色异爪蝗Euchorthippus unicolor(Ikonn.)和条纹异爪蝗Euchorthippus vittatus Zheng.结果显示蝗虫卵子发生第1~6阶段卵母细胞中有不同程度c-kit蛋白特异性表达,但随着卵黄发生的开始逐渐消失,而且3种蝗虫卵子发生过程中c-kit蛋白表达存在种间差异.以上结果提示c-kit蛋白在卵子发生中的表达暗示它参与和调控卵母细胞增殖与分化,此外c-kit蛋白表达种间差异说明在它的调控下不仅导致蝗虫卵子发生进程的迥异而且可能参与维系种间生殖隔离等机制.  相似文献   
28.
In response to changing signals, quiescent hematopoietic stem cells (HSCs) can be induced to an activated cycling state and provide multi-lineage hematopoietic cells to the whole body via blood vessels. However, the precise localization of quiescent HSCs in bone marrow microenvironment is not fully characterized. Here, we performed whole-mount immunostaining of bone marrow and found that BrdU label-retaining cells (LRCs) definitively reside in the sinusoidal hypoxic zone distant from the “vascular niche”. Although LRCs expressed very low level of a well-known HSC marker, c-kit in normal circumstances, myeloablation by 5-FU treatment caused LRCs to abundantly express c-kit and proliferate actively. These results demonstrate that bone marrow LRCs reside in the sinusoidal hypoxic niche, and function as a regenerative cell pool of HSCs.  相似文献   
29.
Recent studies have shown that pulmonary angiogenesis is an important pathological process in the development of hepatopulmonary syndrome (HPS), and growing evidence has indicated that Stromal cell-derived factor 1/C-X-C chemokine receptor type 4 (SDF-1/CXCR4) axis is involved in pulmonary vascular disease by mediating the accumulation of c-kit + cells. This study aimed to test the effect of AMD3100, an antagonist of CXCR4, in HPS pulmonary angiogenesis. Common bile duct ligation (CBDL) rats were used as experimental HPS model and were treated with AMD3100 (1.25 mg/kg/day, i.p.) or 0.9% saline for 3 weeks. The sham rats underwent common bile duct exposure without ligation. The c-kit + cells accounts and its angiogenic-related functions, prosurvival signals, pulmonary angiogenesis and arterial oxygenation were analysed in these groups. Our results showed that pulmonary SDF-1/CXCR4, Akt, Erk and VEGF/VEGFR2 were significantly activated in CBDL rats, and the numbers of circulating and pulmonary c-kit + cells were increased in CBDL rats compared with control rats. Additionally, the angiogenic-related functions of c-kit + cells and pulmonary microvessel counts were also elevated in CBDL rats. CXCR4 inhibition reduced pulmonary c-kit + cells and microvessel counts and improved arterial oxygenation within 3 weeks in CBDL rats. The pulmonary prosurvival signals and pro-angiogenic activity of c-kit + cells were also down-regulated in AMD3100-treated rats. In conclusion, AMD3100 treatment attenuated pulmonary angiogenesis in CBDL rats and prevented the development of HPS via reductions in pulmonary c-kit + cells and inhibition of the prosurvival signals. Our study provides new insights in HPS treatment.  相似文献   
30.
Cardiac c-kit positive cells are cardiac-derived cells that exist within the heart and have a great many protective effects. The senescence of cardiac c-kit positive cells probably leads to cell dysfunction. Bradykinin plays a key role in cell protection. However, whether bradykinin prevents cardiac c-kit positive cells from high-glucose-induced senescence is unknown. Here, we found that glucose treatment causes the premature senescence of cardiac c-kit positive cells. Bradykinin B2 receptor (B2R) expression was declined by glucose-induced senescence. Bradykinin treatment inhibited senescence and reduced intracellular oxygen radicals according to senescence-associated β-galactosidase staining and 2′,7′-dichlorodihydrofluorescein diacetate staining. Moreover, the mitochondrial membrane potential was damaged, as measured by JC-1 staining. The mitochondrial membrane potential was preserved under bradykinin treatment. The concentration of superoxide was decreased, and the concentration of intracellular adenosine triphosphate was increased after bradykinin treatment. Western blot showed that bradykinin leads to AKT and mammalian target of rapamycin (mTOR) phosphorylation and decreased levels of P53 and P16 when compared with glucose treatment alone. Antagonists of B2R, phosphoinositide 3-kinase (PI3K), mTOR, and B2R small interfering RNA prevented the protective effect of bradykinin. P53 antagonist also inhibited the glucose-induced senescence of cardiac c-kit positive cells. In conclusion, bradykinin prevents the glucose-induced premature senescence of cardiac c-kit positive cells through the B2R/PI3K/AKT/mTOR/P53 signal pathways.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号