首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2909篇
  免费   382篇
  国内免费   561篇
  2024年   15篇
  2023年   80篇
  2022年   74篇
  2021年   134篇
  2020年   151篇
  2019年   169篇
  2018年   147篇
  2017年   151篇
  2016年   151篇
  2015年   135篇
  2014年   178篇
  2013年   230篇
  2012年   147篇
  2011年   133篇
  2010年   124篇
  2009年   148篇
  2008年   148篇
  2007年   164篇
  2006年   152篇
  2005年   141篇
  2004年   96篇
  2003年   101篇
  2002年   93篇
  2001年   73篇
  2000年   62篇
  1999年   78篇
  1998年   60篇
  1997年   52篇
  1996年   47篇
  1995年   44篇
  1994年   46篇
  1993年   48篇
  1992年   41篇
  1991年   46篇
  1990年   24篇
  1989年   23篇
  1988年   19篇
  1987年   15篇
  1986年   14篇
  1985年   14篇
  1984年   13篇
  1983年   10篇
  1982年   16篇
  1981年   13篇
  1980年   9篇
  1979年   6篇
  1978年   9篇
  1977年   3篇
  1976年   3篇
  1958年   1篇
排序方式: 共有3852条查询结果,搜索用时 484 毫秒
41.
Since the 1970's the management of aquatic habitats has changed from piecemeal monitoring to the ecosystem approach; this was initiated in the North American Great Lakes, comprising social, economic, and environmental aspects. The information included in this paper is based on the presentation made at the Seminar On Ecosystem Approach To Water Management held in Oslo, Norway during 1991. Recently, the multidisciplinary, holistic, and integrated concept of ecosystem health has emerged, and is being advanced for the implementation of an ecosystem approach to environmental management, which has resulted in the formation of an international society (Aquatic Ecosystem Health & Management Society) and the publication of a primary journal (Journal of Aquatic Ecosystem Health). The information has been updated to incorporate new developments and recent progress about the Society and the journal since the Oslo Seminar.  相似文献   
42.
Organisms modify their development and function in response to the environment. At the same time, the environment is modified by the activities of the organism. Despite the ubiquity of such dynamical interactions in nature, it remains challenging to develop models that accurately represent them, and that can be fitted using data. These features are desirable when modeling phenomena such as phenotypic plasticity, to generate quantitative predictions of how the system will respond to environmental signals of different magnitude or at different times, for example, during ontogeny. Here, we explain a modeling framework that represents the organism and environment as a single coupled dynamical system in terms of inputs and outputs. Inputs are external signals, and outputs are measurements of the system in time. The framework uses time-series data of inputs and outputs to fit a nonlinear black-box model that allows to predict how the system will respond to novel input signals. The framework has three key properties: it captures the dynamical nature of the organism–environment system, it can be fitted with data, and it can be applied without detailed knowledge of the system. We study phenotypic plasticity using in silico experiments and demonstrate that the framework predicts the response to novel environmental signals. The framework allows us to model plasticity as a dynamical property that changes in time during ontogeny, reflecting the well-known fact that organisms are more or less plastic at different developmental stages.  相似文献   
43.
Two species of spiny mice of the genus Acomys—the golden spiny A. russaturs and the common spiny A. cuhirinus—are syrnpatnc in the and and hot parts of the Rift Valley in Israel. The coexistence of these two species is due to exclusion of A. russatus mice by A. cuhirinus mice from nocturnal activity. The aim of this research was to study if odor signals released by A. cahirinus mice can play a role in the exclusion of A. russatus mice. A. russatus mice with an implanted transmitter recording body temperature (Tb) were kept alone in a metabolic chamber under constant conditions of ambient temperature (27°C) and photoperiod (12 h light: 12 h dark). After 5 days of recording, chemical signals from an A. cuhirinus mouse were added through the air tube going into the metabolic chamber of the A. russatus mice. This treatment caused a shift of ∼ 2 h inTb daily rhythm of the naive tested A. russutus mice, whereas no shift was observed in A. russatus mice that had been kept in the same room with the A. cahirinus mouse before measurements. These results strongly support the idea that chemical signals released by A. cahirinus mice can entrain the Tb rhythms of A. russatus mice. Therefore, it may be assumed that the exclusion of A. russatus mice from nocturnal activity by A. cuhirinus mice could be achieved through the odor released by the latter.  相似文献   
44.
Seasonal changes and yearly gross canopy photosynthetic production were estimated for an 18 year old Japanese larch (Larix leptolepis) forest between 1982 and 1984. A canopy photosynthesis model was applied for the estimation, which took into account the effect of light interception by the non-photosynthetic organs. Seasonal changes in photosynthetic ability, amount of canopy leaf area and light environment within the canopy were also taken into account. Amount of leaf area was estimated by the leaf area growth of a single leaf. The change of light environment within the canopy during the growing season was estimated with a light penetration model and the leaf increment within the canopy. Canopy respiration and surplus production were calculated as seasonal and yearly values for the three years studied. Mean yearly estimates of canopy photosynthesis, canopy respiration and surplus production were 37, 13 and 23 tCO2 ha−1 year−1, respectively. Vertical trend, seasonal changes and yearly values of the estimates were analyzed in relation to environmental and stand factors.  相似文献   
45.
Activities of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) were measured in leaf extracts of field grown Amaranthus paniculatus L. (C4) during a natural diurnal irradiance and temperature pattern. Enzyme assays were run at both fixed (30°C) and the corresponding leaf temperature at the time of harvest. Light activation of PEP carboxylase (PEPCase) at fixed assay temperatures was expressed as a decrease in S0–5 (PEP) after a threshold (> 330 μmol m–2 s–1) photon fluence rate was surpassed at noon. Earlier in the morning, increase in apparent enzyme affinity for PEP was observed when the assay was run at leaf temperature, indicating a physiologically meaningfull effect of temperature on S0.5 (PEP). The 3.3-fold increase in PEPCase activity at low PEP and fixed assay temperature between the minimal and maximal irradiance and temperature hours of the day, became 12.8-, 11.5- and 7.4-fold when assays were run at the corresponding leaf temperature during three diurnal cycles with respective temperature differences (max minus min) of 9.0, 8.3 and 7.4°C. The extent of malate inhibition was the same for both day and night forms of PEPCase assayed at 35°C, but increased considerably with night enzyme at 25°C. The results indicate that light increases the apparent affinity of PEPCase for PEP and that at lower temperatures malate becomes more inhibitory. Pyruvate orthophosphate dikinase activity started to increase immediately after sunrise and the 10-fold increase at fixed temperature became 14.8-, 14.2- and 13.1-fold when assays were run at the above leaf temperatures. This indicates that the light effect predominates with pyruvate, orthophosphate dikinase, while with phosphoenolpyravate carboxylase, light and temperature co-operate to increase the day enzyme activities.  相似文献   
46.
47.
以玉米根微粒体为材料进行的微量放射配体结合(MRLB)实验表明玉米根微粒体膜上存在着ABA结合位点,ABA与ABA结合蛋白(ABA-BP)结合的最适pH为6.5,结合反应对温度(0℃和25℃)不太敏感,ABA与ABA-BP的结合反应是一个动态平衡过程,5min即可达最大结合(Bmax)的50%,30min达到最大结合,1h内基本保持不变。胰蛋白酶处理表明此结合位点为蛋白质,冻融实验则表明此蛋白与ABA的结合不仅要求其自身具有特定构象而且需要有一定的膜脂环境,DTT处理实验结果显示ABA-BP中可能存在着二硫键。逆境处理可以提高玉米根微粒体膜对ABA的结合活性,盐胁迫、渗透胁迫、干旱胁迫和热冲激处理分别使结合活性上升34.9%、17.8%、23.1%和13.3%。  相似文献   
48.
包括基因型×环境互作效应的种子遗传模型及其分析方法   总被引:60,自引:3,他引:57  
  相似文献   
49.
Spatial variability in salt-affected fields is normally very high. Thus, most salinity affected lands are actually comprised of many micro-environments, ranging from low to high salinity in the same field. The evidence on testing genotypes across a broad range of salinity levels shows that the genotype-by-salinity level interaction is commonly large. Thus, breeding for saline areas can be compared to what has been known as breeding for wide adaptation. The target environments both for breeding for saline soils or for wide adaptation are actually a population of many possible environments, for which there exists a significant component of genotype-by-environment(G x E) interaction. Thus it is possible to study the merit of potential strategies for breeding for salinity tolerance using the tools that have been developed for the study of breeding for wide adaptation. The evidence from selection and breeding experiments for wide adaptation seems to favour testing on a representative subset of environments, including stress and non-stress locations; but the choice of these locations is complicated by the multidimensional nature of G x E. However, in the case of salt stress, the crop-yield response functions to salinity are well known. This paper presents an attempt to systematise the choice of the optimum environment(s) to select for improved yield under saline soil conditions, based on the three-piece linear equation presented by Maas and Hoffman (1977) and the theory of direct and indirect responses to selection. It is proposed that three saline levels should be enough to make a valid estimation of the suitability of a number of selection strategies. A worked example with data from a set of grain sorghum inbred lines tested on ten saline levels shows that the same selection strategies would be chosen using the information from the ten saline levels as that obtained using the two extremes and one intermediate level.  相似文献   
50.
Experiments on plants are often carried out in growth chambers or greenhouses which necessitate the use of an artificial rooting environment, though this is seldom characterized in detail. Measurements were made to compare the rooting environment in large boxes (0.25 m3) with that in small pots (0.19, 0.55 and 1.90 dm3) in naturally lit chambers. Diurnal temperature fluctuations of 14.6, 11.6 and 7.7°C occurred in the post compared with only 1.9°C in the boxes. Soil drying to a matric potential of-50 kPa was approximately 25 times faster in the pots. The mean heights of 2 year old Sitka spruce (Picea sitchensis (Bong.) Carr.) seedlings grown throughout their second growing season in the three sizes of pots were 38, 62 and 92% of the mean height of those grown in the boxes. Soil solution nutrient concentrations in the boxes were considerably increased by soil drying, an aspect which seems to have received little attention in experiments involving artificially imposed drought. An alternative system of constraining the roots of individual plants within nylon fabric bags, embedded in larger volumes of soil, to facilitate harvesting of complete root systems is described. The importance of the rooting environment in determining the outcome of physiological experiments is also briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号