首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1854篇
  免费   197篇
  国内免费   11篇
  2023年   22篇
  2022年   18篇
  2021年   29篇
  2020年   55篇
  2019年   72篇
  2018年   56篇
  2017年   67篇
  2016年   67篇
  2015年   98篇
  2014年   90篇
  2013年   108篇
  2012年   70篇
  2011年   99篇
  2010年   84篇
  2009年   139篇
  2008年   120篇
  2007年   112篇
  2006年   94篇
  2005年   72篇
  2004年   61篇
  2003年   61篇
  2002年   50篇
  2001年   51篇
  2000年   37篇
  1999年   46篇
  1998年   39篇
  1997年   35篇
  1996年   38篇
  1995年   22篇
  1994年   19篇
  1993年   17篇
  1992年   14篇
  1991年   21篇
  1990年   7篇
  1989年   9篇
  1988年   6篇
  1987年   8篇
  1986年   7篇
  1985年   7篇
  1984年   9篇
  1983年   4篇
  1982年   8篇
  1981年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   3篇
排序方式: 共有2062条查询结果,搜索用时 31 毫秒
101.
1. Plant responses to herbivore attack may have community‐wide effects on the composition of the plant‐associated insect community. Thereby, plant responses to an early‐season herbivore may have profound consequences for the amount and type of future attack. 2. Here we studied the effect of early‐season herbivory by caterpillars of Pieris rapae on the composition of the insect herbivore community on domesticated Brassica oleracea plants. We compared the effect of herbivory on two cultivars that differ in the degree of susceptibility to herbivores to analyse whether induced plant responses supersede differences caused by constitutive resistance. 3. Early‐season herbivory affected the herbivore community, having contrasting effects on different herbivore species, while these effects were similar on the two cultivars. Generalist insect herbivores avoided plants that had been induced, whereas these plants were colonised preferentially by specialist herbivores belonging to both leaf‐chewing and sap‐sucking guilds. 4. Our results show that community‐wide effects of early‐season herbivory may prevail over effects of constitutive plant resistance. Induced responses triggered by prior herbivory may lead to an increase in susceptibility to the dominant specialists in the herbivorous insect community. The outcome of the balance between contrasting responses of herbivorous community members to induced plants therefore determines whether induced plant responses result in enhanced plant resistance.  相似文献   
102.
昆虫与植物关系的研究进展和前景   总被引:58,自引:0,他引:58  
钦俊德 《动物学报》1995,41(1):12-20
本文综述昆虫与植物之间关系的研究概况,包括历史渊源、昆虫选择寄主植物的生理机制,植物对虫害的反应、用抗虫基因在作物中移植以防治害虫和展望。着重叙述昆虫神经中枢对于植物理化特性所产生的感觉内导的综合作用,植物蒙受虫害后的补偿作用及由此诱导所产生的化学防御作用。讨论了以抗虫基因移植于农林作物来防治害虫是否会引起昆虫对这种新育成的植物产生适应或抗性。昆虫与植物之间的关系是一个重要的科研领域,对其发展前景  相似文献   
103.
Robust phylogenies for brood-parasitic birds, their hosts, and nearest nesting relatives provide the framework to address historical questions about host-parasite coevolution and the origins of parasitic behavior. We tested phylogenetic hypotheses for the two genera of African brood-parasitic finches, Anomalospiza and Vidua, using mitochondrial DNA sequence data from 43 passeriform species. Our analyses strongly support a sister relationship between Vidua and Anomalospiza, leading to the conclusion that obligate brood parasitism evolved only once in African finches rather than twice, as has been the conventional view. In addition, the parasitic finches (Viduidae) are not recently derived from either weavers (Ploceidae) or grassfinches (Estrildidae), but represent a third distinct lineage. Among these three groups, the parasitic finches and estrildids, which includes the hosts of all 19 Vidua species, are sister taxa in all analyses of our full dataset. Many characters shared by Vidua and estrildids, including elaborate mouth markings in nestlings, unusual begging behavior, and immaculate white eggs, can therefore be attributed to common ancestry rather than convergent evolution. The host-specificity of mouth mimicry in Vidua species, however, is clearly the product of subsequent host-parasite coevolution. The lineage leading to Anomalospiza switched to parasitizing more distantly related Old World warblers (Sylviidae) and subsequently lost these characteristics. Substantial sequence divergence between Vidua and Anomalospiza indicates that the origin of parasitic behavior in this clade is ancient (approximately 20 million years ago), a striking contrast to the recent radiation of extant Vidua. We suggest that the parasitic finch lineage has experienced repeated cycles of host colonization, speciation, and extinction through their long history as brood parasites and that extant Vidua species represent only the latest iterations of this process. This dynamic process may account for a significantly faster rate of DNA sequence evolution in parasitic finches as compared to estrildids and other passerines. Our study reduces by one the tally of avian lineages in which obligate brood parasitism has evolved and suggests an origin of parasitism that involved relatively closely related species likely to accept and provide appropriate care to parasitic young. Given the ancient origin of parasitism in African finches, ancestral estrildids must have been parasitized well before the diversification of extant Vidua, suggesting a long history of coevolution between these lineages preceding more recent interactions between specific hosts and parasites.  相似文献   
104.
We have investigated the mechanisms of induction of apoptosis by the antineoplastic ether lipid ET-18-OCH3 (ALP) in sensitive S49wt mouse lymphoma cells and ALP-resistant S49ar variants, both with wild-type p53, and in related L1210 cells with mutated p53. Ether lipid-resistant S49ar cells were cross-resistant to extracellular stress factors (cold shock, heat shock, H2O2, dimethylsulfoxide) and to radiation-induced apoptosis but not to physiological apoptotic signals (dexamethasone, growth factor deprivation, thapsigargin, C2-ceramide) and expressed similar levels of the apoptosis-regulating proteins Bcl-2, Bcl-X, Bax, Bad and Bak as did the parent S49wt cells. The uptake of [3H]-ALP was strongly reduced in the stress-resistant cells but this was not associated with significant differences in membrane cholesterol:phospholipid content nor in membrane microviscosity. In S49ar cells the activity of the antioxidant enzyme glutathione peroxidase (GSH-Px) was increased 4-fold and depletion of glutathione with the drug L-buthionine-S-R-sulfoximine (L-BSO) lowered the resistance of S49ar cells to ALP, stress factors and ionising radiation. The results indicate that ether lipids induce apoptosis by imposing a special form of physico-chemical stress, mediated by reactive oxygen species but independent of p53 status. The capacity of glutathione-dependent anti-oxidant defence appeared an important and shared determinant of the sensitivity to ether lipids, several types of extracellular stress and ionising radiation.  相似文献   
105.
Jasmonic acid (JA) is a plant hormone that is involved in the induction of plant defence in response to herbivore attack. We studied the effect of exposure of gerbera leaves to JA on indirect plant defence, i.e. attraction of natural enemies of herbivores. Treatment of gerbera leaves with JA or feeding damage by the herbivorous spider mite Tetranychus urticae, both induced the production of a complex odour blend that attracts the predatory mite Phytoseiulus persimilis. This phytoseiid predator is a very effective biological control agent of the spider mite T. urticae. Comparison of headspace composition of gerbera leaves exposed to either JA or T. urticae revealed a large degree of resemblance, but some quantitative and qualitative differences were recorded. The major chemical group in both treatments is formed by the terpenoids which quantitatively comprised up to 80% of the total odour blend. These terpenoids included (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--ocimene and linalool that are known to attract P. persimilis. Aldehydes, alcohols, esters and ketones, together with nitrogenous compounds formed the remaining constituents of the odour blend. The induction of predator attractants in plants by JA may be applied in biological control programs, which is discussed in this paper.  相似文献   
106.
107.
Xiang H  Chen J 《Annals of botany》2004,94(3):377-384
Background and aims To understand the defensive characteristics of interspecies varieties and their responses to herbivory damage, four species of Ficus plants (Ficus altissima, F. auriculata, F. racemosa and F. hispida) were studied. They were similar in life form, but differed in successional stages. Of these, Ficus altissima is a late successional species, F. hispida is a typical pioneer and F. auriculata and F. racemosa are intermediate successional species. We addressed the following questions: (1) What is the difference in plant traits among the four species and are these traits associated with differences in herbivory damage levels? (2) What is the difference in the damage-induced changes among the four species?• Methods Herbivory damage was measured in the field on randomly planted seedlings of the four species of the same age. Defences to herbivory were also tested by feeding leaves of the four species to larvae of Asota caricae in the laboratory. A total of 14 characters such as water content, thickness, toughness, pubescence density on both sides, leaf expansion time, lifetime and the contents of total carbon (C), nitrogen (N), phosphorous (P), potassium (K), magnesium (Mg) and calcium (Ca) were measured. Leaf calcium oxalate crystal (COC) density, total Ca and N content, leaf toughness and height were measured to investigate induced responses to artificial herbivory among the four species.• Key results and conclusions Herbivory damage in the four studied species varied greatly. The pioneer species, F. hispida, suffered the most severe herbivory damage, while the late successional species, F. altissima, showed the least damage. A combination of several characteristics such as high in content of N, Ca and P and low in leaf toughness, lifetime and C : N ratio were associated with increased herbivore damage. The late successional species, F. altissima, might also incorporate induced defence strategies by means of an increase in leaf COC and toughness.Key words: Calcium oxalate crystals, defensive characteristics, Ficus; herbivory, induced defence  相似文献   
108.
BACKGROUND AND AIMS: Control of diseases in the key tropical staple, cassava, is dependent on resistant genotypes, but the innate mechanisms are unknown. The aim was to study phenylpropanoids and associated enzymes as possible defence components. METHODS: Phenylalanine ammonia-lyase (PAL), phenylpropanoids and peroxidases (POD) were investigated in elicited cassava suspension cells and leaves. Yeast elicitor was the most effective of several microbial and endogenous elicitors. Fungitoxicity was determined against the cassava pathogens Fusarium solani, F. oxysporum and the saprotroph Trichoderma harzianum. KEY RESULTS: A single and rapid (> or =2-3 min) oxidative burst, measured as hydrogen peroxide, occurred in elicited cells. PAL activity was induced maximally at 15 h and was preceded by PAL mRNA accumulation, which peaked at 9 h. Symplasmic POD activity increased four-fold in cells, 48 h post-elicitation. POD isoforms (2-7 isoforms, pI 3.1-8.8) were detected in elicited and unelicited cells, extracellular medium and leaves but two extracellular isoforms were enhanced post-elicitation. Also expression of a cassava peroxidase gene MecPOD1 increased in elicited cells. Only anionic forms oxidized scopoletin, with highest activity by isoform pI 3.6, present in all samples. Unidentified phenolics and possibly scopolin increased post-elicitation, but there was no enhancement of scopoletin, rutin or kaempferol-3-O-rutinoside concentration. Fungal germ tube elongation was inhibited more than germination by esculetin, ferulic acid, quercetin and scopoletin. T. harzianum was generally more sensitive than the pathogens and was inhibited by > or =50 microg mL(-1) of ferulic acid and quercetin and > or =10 microg mL(-1) of scopoletin. CONCLUSIONS: Phenolic levels in cells were not enhanced and were, theoretically, too low to be inhibitory. However, in combination and when oxidized they may contribute to defence, because oxidation of esculetin and scopoletin by peroxidase and of esculetin by tyrosinase enhanced their fungitoxicity up to 20-fold.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号