首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   133篇
  免费   3篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   10篇
  2008年   13篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   2篇
  1982年   4篇
  1981年   1篇
  1980年   1篇
  1979年   6篇
  1978年   8篇
  1977年   2篇
  1976年   1篇
  1975年   3篇
  1974年   3篇
  1973年   2篇
排序方式: 共有136条查询结果,搜索用时 281 毫秒
91.
The effects of busulphan on the chromosomes of normal human lymphocytes   总被引:2,自引:0,他引:2  
In vitro exposure of human lymphocytes to busulphan (BUS) produced an increase in chromosome aberrations and in sister-chromatid exchange (SCE) frequency. The distribution of chromosome breaks throughout the karyotype was non-random and they occurred mainly in the G-negative bands. Certain bands had a marked susceptibility to BUS and comparisons with the human chromosome-break distributions reported for a number of drugs revealed that some of these bands were equally susceptible to other alkylating agents. Both the number of chromosome gaps and breaks and the SCE frequency increased with BUS concentration, but only the SCE dose--response was a clearly defined linear relationship. Therefore a standard SCE dose--response curve was constructed for future comparison with the results of similar investigations of patients on BUS therapy.  相似文献   
92.
In a Namru mouse liver epithelial cell strain designated NMuLi, aryl hydrocarbon hydroxylase (AHH) activity peaked at 12 h post-induction with 1 μg/ml of benzo(a)pyrene (BaP) in both confluent and growing cells. Maximal levels of AHH activity were reached on day two post-plating. This induced activity was inhibited in vitro 78% by gassing the incubation mixture with carbon monoxide for 15 s, and inhibited 93% by addition of 40 μg/ml of 7,8 benzoflavone(BF).Induced AHH levels were higher in epithelial clones that were sensitive to the toxicity of BaP than in resistant clones. The survival fraction of clones from NMuLi and of subclones derived from a sensitive clone of NMuLi after BaP treatment was a negative exponential function of the maximal induced AHH activity in the clones.One of the clones, NMuLi cl 8, was extremely susceptible to the toxic effects of BaP, the ±(trans)-7α, 8β-dihydroxy-7,8-dihydro-BaP(7,8-diol), and the (±)-7α,8β-dihydroxy-9β,10β-epoxy-7,8,9,10-tetrahydro-BaP (diolepoxide), known metabolites of BaP. The toxicity of BaP and the 7,8 diol to this clone was inhibited by BF, suggesting that these cells possessed an enzyme activity inhibitable by BF that could epoxidize BaP to the 7,8 oxide and then epoxidize the resultant 7,8 diol to the diol-epoxide. Another clone derived from NMuLi, clone 7, was relatively resistant to the toxic effects of BaP and the 7,8-diol, but still extremely susceptible to the toxic effects of the diol-epoxide. The slight toxicity to BaP in this clone was inhibited by BF, but the toxicity of the 7,8-diol to this clone was not inhibited by BF. A typical cytochrome P450 inhibitor, metyrapone, had no effect on the toxicity of BaP, the 7,8-diol, or the diol-epoxide to either clone 7 or clone 8.The results suggest that these liver cells possess two enzymes that play some role in polycyclic hydrocarbon-induced toxicity. Enzyme A, a BaP-inducible enzyme that is inhibitable by BF, efficiently metabolizes BaP to the 7,8-diol and the 7,8-diol to the diol-epoxide. It is responsible for most of the hydrocarbon toxicity. Enzyme B is not inhibitable by BF and metabolizes the 7,8-diol less efficiently to the diol-epoxide or efficiently to other, less toxic products.  相似文献   
93.
CHO cells were synchronized in G1 phase and treated with MMS or HN2. The subsequent rate of DNA replication was found to be reduced in a dose-dependent manner. In addition, 2 X 10(-3 M and 3 X 10(-3) M MMS resulted in a 3--4 h delay prior to the initiation of S phase. If the cells were held for 8 h in hydroxyurea after MMS treatment, no subsequent lag in DNA synthesis was seen after removal of the hydroxyurea. The entry of confluent cells into S phase was found to be delayed 7 h upon trypsinizing and replating. Treatment of these cells with MMS resulted in a reduced rate of DNA replication, but no further delay in its initiation. Repair replication was found to continue at a constant rate for at least 12 h following MMS treatment of cells under all of these conditions. At the concentrations used in these experiments MMS severely inhibited the rate of protein synthesis, but HN2 had little effect. By comparing both the kinetics of repair replication and recovery of protein synthesis with the rate of DNA replication, it was concluded that the initial, severe reduction in rate following MMS treatment was probably due to an inhibition of protein synthesis.  相似文献   
94.
In vivo inhalation exposure to styrene oxide (25, 50, 75 and 100 ppm) for 2, 4 or 20 days (25 ppm only) had no effects on chromosomal aberration rates or sister chromatid exchange (SCE) frequencies (BrdU/labelling performed in vitro) in the bone marrow cells of Chinese hamsters. The only positive response in aberration frequency was obtained when styrene oxide was injected in lethal concentration (500 mg/kg body weight, i.p.) into the animal. One animal out of six showed slightly elevated SCE values after this high dose. The response of the hepatic drug metabolizing enzymes to styrene oxide exposure was found to be rather weak, which may be due to rather high activity of epoxide hydratase in Chinese hamsters as compared to e.g. mouse.  相似文献   
95.
Summary There is indirect evidence that the in vivo proliferative response of rodent uterine epithelium to estrogen requires interaction with the underlying stroma in pre- and post-pubescent animals. To examine this potential requirement directly, the proliferative response of epithelium to 17β-estradiol in the presence or absence of stroma was measured in vitro. Uterine epithelial and stromal cells were isolated separately from immature or adult mice, and were maintained as monocultures or cocultures in defined, serum-free medium with or without 8 × 10−9 M 17β-estradiol. Incorporation of bromodeoxyuridine into the DNA was determined by immunolabeling to assay proliferation in individual cells. Cell morphology and immunolabeling of cytokeratin were used to distinguish epithelial from stromal cells. Treatment of cocultures with 17β-estradiol for 24 h increased the proliferation of epithelial cells relative to controls approximately threefold, whereas, in monocultures of epithelial or stromal cells 17β-estradiol decreased the number of bromodeoxyuridine-incorporating cells by approximately half. Furthermore, cell contact between epithelial and stromal cells was important for the effects of 17β-estradiol on cells in cocultures. Approximately three quarters of the 17β-estradiol-induced proliferation of epithelial cells in cocultures was produced by epithelial cells within colonies that were also contacting stromal cells. These results are consistent with the hypothesis that stromal cells mediate the estrogenic proliferative response, and provide evidence that this mediation involves cell contact or stroma-mediated changes in the microenvironment immediately around the epithelial cell.  相似文献   
96.
Seasonal changes in vertebrate brain function are pervasive, but annual cycles in the rates of neuronal incorporation are established only in songbirds. Although cell division continues in the subependymal and hippocampal subgranular zones of adult rodents, there exists no parallel evidence that seasonal plasticity in mammals extends to changes in neuronal or glial number. We examined the effect of photoperiod on incorporation of new neurons in the brain of the adult golden hamster, a long-day breeder. We administered the cell birth marker 5′-bromode-oxyuridine (BrdU) to males which had either been maintained in long days, transferred to short days for 10 weeks, or moved acutely from long to short or short to long days. The number of cells in specific brain regions immunoreactive (ir) for this thymidine analog was determined 7 weeks later. The number of BrdU-ir cells in the dentate gyrus and subependymal zone increased twofold in short days. Transfer between photoperiods 10 days before the BrdU injections produced intermediate numbers of BrdU-labeled cells in the dentate gyrus, but was as effective as long-term photoperiodic exposure in the subependymal zone. Photoperiod also had similar effects in the hypothalamus and cingulate/retrosplenial cortex, but not in the central gray or preoptic area. Double-label immunocytochemistry indicated that very few of the BrdU-ir cells were glia, but that a majority had neuronal phenotype. In the subependymal zone, short days significantly increased the number of BrdU-labeled neurons. We did not detect significant effects of photoperiod on the volume of either the granule cell layer of the hippocampus or the dentate gyrus as a whole. We conclude that short day lengths increase neuronal birth and/or survival in several brain regions of adult hamsters. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 410–420, 1998  相似文献   
97.
Although neurogenesis in the brain of adult vertebrates is region dependent, lesion induces generation of new neurons in non‐neurogenic brain regions. These findings raise the question of the role of new neurons in brain repair and functional recovery. We addressed this question by applying previous observations that electrolytic lesion induced neurogenesis in the ventromedial nucleus (VMN) of the hypothalamus in adult ring doves. Such lesions disrupted the male's courtship behavior, which could be reinstated after rehabilitation with a female. We investigated whether lesion‐induced newborn neurons in the VMN facilitate the recovery of courtship behavior in the lesioned birds. We conducted systematic observations of cytological, morphological, and neuroanatomical changes in the lesioned VMN, and concurrently we monitored behavioral changes. Using a multitude of specific cell markers, we found a well‐circumscribed cellular zone that proliferated actively. This highly proliferative zone initially appeared along the periphery of the lesion site, where cells had high levels of expression of neuronal, glial, and neurovascular markers. As newborn neurons matured at the lesion site, the necrosis gradually decreased, whereas a downsized proliferative zone relocated to a region ventral to the VMN. Some of the mature neurons were found to project to the midbrain vocal nuclei. Restoration of these projection neurons coincided with the recovery of courtship vocalization. Finally, we found that a social factor, that is, when the male doves were cohoused with a mate, facilitated neurogenesis and behavioral recovery. These results suggest that lesion‐induced neurogenesis contributes to behavioral recovery in adult animals. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
98.
99.
New neurons are born and integrated into functional circuits in the brains of many adult organisms. In virtually all of these systems, serotonin is a potent regulator of neuronal proliferation. Specific neural pathways underlying these serotonergic influences have not, however, been identified and manipulated. The goal of this study was to test whether adult neurogenesis in the crustacean brain is influenced by electrical activity in the serotonergic dorsal giant neurons (DGNs) innervating the primary olfactory processing areas, the olfactory lobes, and higher order centers, the accessory lobes. Adult‐born neurons occur in two interneuronal cell clusters that are part of the olfactory pathway. This study demonstrates that neurogenesis also continues in these areas in a dissected, perfused brain preparation, although the rate of neuronal production is lower than in brains from intact same‐sized animals. Inclusion of 10?9 M serotonin in the perfusate delivered to the dissected brain preparation restores the rate of neurogenesis to in vivo levels. Although subthreshold stimulation of the DGN does not significantly alter the rate of neurogenesis, electrical activation of a single DGN results in significant increases in neurogenesis in Cluster 10 on the same side of the brain, when compared with levels on the contralateral, unstimulated side. Measurements of serotonin levels in the perfusate using high‐performance liquid chromatography established that serotonin levels are elevated about 10‐fold during DGN stimulation, confirming that serotonin is released during DGN activity. This is the first identified neural pathway through which adult neurogenesis has been directly manipulated. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   
100.
In multiple sclerosis (MS) remyelination by oligodendrocytes (OL) is incomplete, and it is associated with a decrease in axonal neurofilaments (NF) and tubulin (TUB). To determine whether these proteins could participate directly in MS remyelination failure, or indirectly through proteins that are co-associated, we have analysed their effects in pure OL cultures. Rat brain NF fractions, recovered by successive centrifugations increase either OL progenitor (OLP) proliferation (2nd pellet, P2), or only their maturation (P5), whereas albumin, liver and skin proteins, as well as recombinant GFAP or purified actin were ineffective. NF (P2) copurify mainly with TUB, as well as with other proteins, like MAPs, Tau, spectrin β2, and synapsin 2. These purified, or recombinant, proteins increased OLP proliferation without delaying their maturation, and appeared responsible for the proliferation observed with P2 fractions. Among putative signaling pathways mediating these effects Fyn kinase was not involved. Whereas NF did not alter the growth of cultured astrocytes, the NF associated proteins enhanced their proliferation. This suggests that NF and their associated proteins exert specific effects on OL development, broadening the field of axon-oligodendrocyte interactions. In case of axon damage in vivo, extracellular release of such axonal proteins could regulate remyelination and astrocytic gliosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号