首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43805篇
  免费   17359篇
  国内免费   85篇
  2024年   3篇
  2023年   19篇
  2022年   44篇
  2021年   461篇
  2020年   2818篇
  2019年   4362篇
  2018年   4618篇
  2017年   4594篇
  2016年   4302篇
  2015年   4177篇
  2014年   4077篇
  2013年   4447篇
  2012年   3833篇
  2011年   4015篇
  2010年   3499篇
  2009年   2321篇
  2008年   2471篇
  2007年   1893篇
  2006年   1908篇
  2005年   1590篇
  2004年   1260篇
  2003年   1379篇
  2002年   1179篇
  2001年   897篇
  2000年   447篇
  1999年   296篇
  1998年   31篇
  1997年   57篇
  1996年   37篇
  1995年   28篇
  1994年   30篇
  1993年   38篇
  1992年   27篇
  1991年   20篇
  1990年   7篇
  1989年   9篇
  1988年   3篇
  1987年   11篇
  1986年   5篇
  1985年   4篇
  1984年   7篇
  1982年   4篇
  1981年   4篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   5篇
  1973年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
121.
We tested the hypothesis that locomotor speed and endurance show a negative genetic correlation using a genetically variable laboratory strain of house mice (Hsd:ICR: Mus domesticus). A negative genetic correlation would qualify as an evolutionary “constraint,” because both aspects of locomotor performance are generally expected to be under positive directional selection in wild populations. We also tested whether speed or endurance showed any genetic correlation with body mass. For all traits, residuals from multiple regression equations were computed to remove effects of possible confounding variables such as age at testing, measurement block, observer, and sex. Estimates of quantitative genetic parameters were then obtained using Shaw's (1987) restricted maximum-likelihood programs, modified to account for our breeding design, which incorporated cross-fostering. Both speed and endurance were measured on two consecutive trial days, and both were repeatable. We initially analyzed performances on each trial day and the maximal value. For endurance, the three estimates of narrow-sense heritabilities ranged from 0.17 to 0.33 (full ADCE model), and some were statistically significantly different from zero using likelihood ratio tests. The heritability estimate for sprint speed measured on trial day 1 was 0.17, but negative for all other measures. Moreover, the additive genetic covariance between speeds measured on the two days was near zero, indicating that the two measures are to some extent different traits. The additive genetic covariance between speed on trial day 1 and any of the four measures of endurance was negative, large, and always statistically significant. None of the measures of speed or endurance was significantly genetically correlated with body mass. Thus, we predict that artificial selection for increased locomotor speed in these mice would result in a decrease in endurance, but no change in body mass. Such experiments could lead to a better understanding of the physiological mechanisms leading to trade-offs in aspects of locomotor abilities.  相似文献   
122.
Genetic variances, heritabilities, and genetic correlations of floral traits were measured in the monocarpic perennial Ipomopsis aggregata (Polemoniaceae). A paternal half-sib design was employed to generate seeds in each of four years, and seeds were planted back in the field near the parental site. The progeny were followed for up to eight years to estimate quantitative genetic parameters subject to natural levels of environmental variation over the entire life cycle. Narrow-sense heritabilities of 0.2–0.8 were detected for the morphometric traits of corolla length, corolla width, stigma position, and anther position. The proportion of time spent by the protandrous flowers in the pistillate phase (“proportion pistillate”) also exhibited detectable heritability of near 0.3. In contrast, heritability estimates for nectar reward traits were low and not significantly different from zero, due to high environmental variance between and within flowering years. The estimates of genetic parameters were combined with phenotypic selection gradients to predict evolutionary responses to selection mediated by the hummingbird pollinators. One trait, corolla width, showed the potential for a rapid response to ongoing selection through male function, as it experienced both direct selection, by influencing pollen export, and relatively high heritability. Predicted responses were lower for proportion pistillate and corolla length, even though these traits also experienced direct selection. Stigma position was expected to respond positively to indirect selection of proportion pistillate but negatively to selection of corolla length, with the net effect sensitive to variation in the selection estimates. Anther position also was not directly selected but could respond to indirect selection of genetically correlated traits.  相似文献   
123.
A marker-based method for studying quantitative genetic characters in natural populations is presented and evaluated. The method involves regressing quantitative trait similarity on marker-estimated relatedness between individuals. A procedure is first given for estimating the narrow sense heritability and additive genetic correlations among traits, incorporating shared environments. Estimation of the actual variance of relatedness is required for heritability, but not for genetic correlations. The approach is then extended to include isolation by distance of environments, dominance, and shared levels of inbreeding. Investigations of statistical properties show that good estimates do not require great marker polymorphism, but rather require significant variation of actual relatedness; optimal allocation generally favors sampling many individuals at the expense of assaying fewer marker loci; when relatedness declines with physical distance, it is optimal to restrict comparisons to within a certain distance; the power to estimate shared environments and inbreeding effects is reasonable, but estimates of dominance variance may be difficult under certain patterns of relationship; and any linkage of markers to quantitative trait loci does not cause significant problems. This marker-based method makes possible studies with long-lived organisms or with organisms difficult to culture, and opens the possibility that quantitative trait expression in natural environments can be analyzed in an unmanipulative way.  相似文献   
124.
We used a nonmanipulative, marker-based method to study quantitative genetic inheritance in two habitats of a common monkeyflower population. The method involved regressing quantitative trait similarity on marker-estimated relatedness between individuals sampled in the field. We sampled 300 adult plants from each of two transects, one along a stream habitat and another through a meadow habitat. For each plant we measured 10 quantitative characters and assayed 10 polymorphic isozyme loci. In the meadow habitat, relatedness of plants within 1 m was moderate (r = 0.125, corresponding to half-sibs) as was actual variance of relatedness (Vr = 0.044). Significant heritabilities of 50–70% were found for corolla width and the fitness characters of flower number and plant weight. Genetic correlations were strongly positive, but sharing of environmental effects within 1 m was weak. In the stream habitat, levels of relatedness were lower and similar heritabilities were indicated. To detect dominance variance and the correlation of phenotypes due to shared inbreeding, we also estimated higher-order coefficients of relationship and inbreeding, but these did not significantly differ from zero. Laboratory-based estimates of heritability in the field were lower than the marker-based estimates, indicating that natural heritabilities and genetic correlations may be stronger than indicated by controlled studies.  相似文献   
125.
126.
Six pesticides and two spray oils were tested against Polyphagotarsonemus latus. The chemicals were evaluated under laboratory conditions, requiring the development of a novel bioassay method, which is reported here. The pesticide toxicities fell into three distinct groups, namely abamectin, conventional pesticides and oils. The relative pesticide toxicities at the LC50 level were abamectin 4.9×10-8 g ai l-1, endosulfan 1.1×10-3 g ai l-1, fenpyroximate 2.3×10-3 g ai l-1, pyridaben 4.1×10-3 g ai l-1, tebufenpyrad 4.4×10-3 g ai l-1, dicofol 4.5×10-3 g ai l-1, petroleum spray oil 3.4×10-1 g ai l-1 and canola oil 4.1×10-1 g ai l-1. The calculation of the LC99.9 values allows for resistance monitoring in P. latus and the suggested discriminating concentrations are abamectin 1.0×10-4 g ai l-1; endosulfan, pyridaben and dicofol 1.0×10-1 g ai l-1 fenpyroximate and tebufenpyrad 5.0×10-1 g ai l-1.  相似文献   
127.
Evolutionary constraints on the ability of herbivores to efficiently use a set of phytochemically similar hosts, while maintaining a high performance on phytochemically different hosts, are central in explaining the predominance of host specialization in phytophagous insects. Such feeding trade-offs could be manifested within insect populations as negative genetic correlations in fitness on different host species. We tested the hypothesis that feeding trade-offs were present within a population of the obliquebanded leafroller,Choristoneura rosaceana (Harris). Components of fitness were measured in families originating from an apple orchard that were fed on four host-plant species in the laboratory. Under the conditions of this experiment, all across-host genetic correlations were strongly positive, suggesting that this population comprised true generalists. With the exception of diapausing propensity, the heritability of the fitness components tended to be lower in caterpillars fed on apple leaves than in insects fed other hosts. This suggests a constraint on the selective response of the fitness components in the orchard environment.  相似文献   
128.
It has been assumed that herbivores constitute a selective agent for the evolution of plant resistance. However, few studies have tested this hypothesis. In this study, we look at the annual weed Datura stramonium for evidence of current natural selection for resistance to herbivorous insects. Paternal half-sib families obtained through controlled crosses were exposed to herbivores under natural conditions. The plants were damaged by two folivorous insects: the tobacco flea beetle Epitrix parvula and the grasshopper Sphenarium purpurascens. Selection was estimated using a multiple-regression analysis of plant size and of damage by the two herbivores on plant fitness measured as fruit production for both individual phenotypes and family breeding values (genetic analysis). Directional phenotypic selection was detected for both larger plant size and lower resistance to the flea beetles, whereas stabilizing phenotypic selection was revealed for resistance to S. purpurascens. However, performing the same analyses on the breeding values of the characters revealed directional and stabilizing selection only for plant size. Thus, no agreement existed between the results of the two types of analyses, nor was there any detectable potential for genetic change in the studied population because of selection on herbivore resistance. The narrow-sense heritability of every trait studied was small (all <0.1) and not different from zero. The potential for evolutionary response to natural selection for higher resistance to herbivores in the studied population of D. stramonium is probably limited by lack of genetic variation. Natural selection acts on phenotypes, and the detection of phenotypic selection on resistance to herbivores confirms their ecological importance in determining plant fitness. However, evolutionary inferences based solely on phenotypic selection analyses must be interpreted with caution.  相似文献   
129.
The patterns of variation in fluctuating asymmetry were studied in four morphological characters of the barn swallow Hirundo rustica. The level of absolute and relative asymmetry was larger in the secondary sexual character “outer tail length” than in three nonsexual morphological traits (wing, central tail, and tarsus length). The extent of individual asymmetry in outer tail length was negatively correlated with tail-ornament size, whereas the relationship between asymmetry of all other morphological characters and their size was flat or U-shaped. Asymmetry in outer tail length was unrelated to asymmetry in other morphological characters, whereas asymmetries in the length of wing, central tail, and tarsus were positively correlated. Male bam swallows exhibited larger asymmetry in outer tail length than females. Asymmetry of most morphological traits exhibited intermediate repeatabilities between years, with the exception of male and female outer tail length, which were highly repeatable. Tail asymmetry of offspring weakly, though significantly, resembled that of their parents. Asymmetry in wing and outer tail length was also significantly related to several fitness components. Male barn swallows that acquired a mate were less asymmetric in wing and outer tail length than unmated males. Females with more asymmetrical tails laid eggs significantly later. Annual reproductive success was unrelated to fluctuating asymmetry. Male barn swallows that survived were less asymmetric in wing and outer tail length than nonsurvivors, whereas female survivors were less asymmetric in outer tail length than nonsurvivors. These results suggest that levels of fluctuating asymmetry in barn swallows are associated with differences in fitness.  相似文献   
130.
The in vivo significance of turgor-dependent unloading was evaluated by examining assimilate transport to and within intact developing seeds of Phaseolus vulgaris (cv. Redland Pioneer) and Vicia faba (cv. Coles Prolific). The osmotic potentials of the seed apoplast were low. As a result, the osmotic gradients to the seed coat symplast were relatively small (i.e. 0.1 to 0.3 MPa). Sap concentrations of sucrose and potassium in the seed apoplast and coat symplast accounted for some 45 to 60% of the osmotic potentials of these compartments. Estimated turnover times of potassium and sucrose in the seed apoplast of < 1 h were some 5 to 13 times faster than the respective turnover times in the coat symplast pools. The small osmotic gradient between the seed apoplast and coat symplast combined with the relatively rapid turnover of solutes in the apoplast pool, confers the potential for a small change in assimilate uptake by the cotyledons to be rapidly translated into an amplified shift in the cell turgor of the seed coat. Observed adjustments in the osmotic potentials of solutions infused between the coat and cotyledons of intact seed were consistent with the in vivo operation of turgor-dependent unloading of solutes from the coat. Homeostatic regulation of turgor-dependent unloading was indicated by the maintenance of apoplast osmotic potentials of intact seeds when assimilate balance was manipulated by partial defoliation or elevating pod temperature. In contrast, osmotic potentials of the coat symplast adjusted upward to new steady values over a 2 to 4 h period. The resultant downward shift in coat cell turgor could serve to integrate phloem import into the seed coat with the new rates of efflux to the seed apoplast. Circumstantial evidence for this linkage was suggested by the approximate coincidence of the turgor changes with those in stem levels of 32P used to monitor phloem transport. The results obtained provide qualified support for the in vivo operation of a turgor homeostat mechanism. It is proposed that the homeostat functions to integrate assimilate demand by the cotyledons with efflux from and phloem import into the coats of developing legume seed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号