首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188篇
  免费   7篇
  国内免费   18篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   8篇
  2019年   3篇
  2018年   6篇
  2017年   7篇
  2016年   4篇
  2015年   5篇
  2014年   7篇
  2013年   19篇
  2012年   3篇
  2011年   12篇
  2010年   4篇
  2009年   22篇
  2008年   19篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   7篇
  2003年   12篇
  2002年   2篇
  2001年   10篇
  2000年   7篇
  1999年   5篇
  1998年   4篇
  1997年   4篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1984年   2篇
  1981年   1篇
排序方式: 共有213条查询结果,搜索用时 15 毫秒
91.
92.
Africa is a continent with abundant, diverse and un-exploited renewable energy resources that are yet to be used for improving the livelihood of the vast majority of the population. The production of biogas via anaerobic digestion of large quantities of agricultural residues, municipal wastes and industrial waste(water) would benefit African society by providing a clean fuel in the form of biogas from renewable feedstocks and help end energy poverty. Biogas technology can serve as a means to overcome energy poverty, which poses a constant barrier to economic development in Africa. Anaerobic digestion of the large quantities of municipal, industrial and agricultural solid waste in developing countries present environmental conditions that make use of anaerobic biotechnology extremely favourable under perspective of sustainable development. However, the use of biogas is not widespread in Africa. There are many reasons of economic, technical and non-technical nature for the marginal use of biogas in Africa. The key issue for biogas technology in Africa is to understand why large scale-up has not occurred despite demonstration by several programmes of the viability and effectiveness of biogas plants. This article provides knowledge-based review of biogas technology status, constraints and prospects in Africa. In addition, recommendations to overcome the technological and non-technological challenges to commercialise biogas are discussed. Recommendations for large scale adoption for biogas technology include establishing national institutional framework, increasing research and development, education and training and providing loans and subsidies and major policy shift in the energy sector. The conclusion is that biogas technology must be encouraged, promoted, invested, researched, demonstrated and implemented in Africa.  相似文献   
93.
In an experiment with 40 growing Florina (Pelagonia) lambs, effects of replacing barley grain, sugar beet pulp, and alfalfa meal with fermented olive wastes (FOW) and soybean meal on productivity and meat composition was determined. In the 45-day experiment, lambs were allocated to one of the four treatments of 10 lambs (5 male and 5 female) each. Male and female lambs had an initial body weight (BW) of 19.7 ± 0.8 and 19.5 ± 0.8 kg, respectively, and were individually fed a concentrate mixture ad libitum and alfalfa hay (0.18 kg/lamb/day, dry matter (DM) basis). The FOW was added to the concentrate mixtures at inclusion levels (as fed basis) of 0, 50, 100, and 150 kg/t for treatments FOW0, FOW50, FOW100, and FOW150, respectively. Male lambs grew faster (P<0.01) than female lambs, but no differences (P>0.05) occurred among FOW treatments in final BW, BW gain, DM intake, or feed conversion ratio. Males had heavier (P<0.01) fasted BW and cold carcass weight, and lower (P=0.04) carcass yield than females, but no differences in carcass components among treatments were detected. FOW can be incorporated into concentrates for growing lambs, at levels up to 150 kg/t, with no adverse effects on performance or carcass characteristics.  相似文献   
94.
95.
Labile pool of cadmium in sludge-treated soils   总被引:1,自引:0,他引:1  
Pandeya  S.B.  Singh  A.K.  Jha  P. 《Plant and Soil》1998,202(1):1-13
The labile pool of cadmium in sludge-treated soils was determined by application of isotopic dilution principle under laboratory and green house conditions using moong (Phaseolus aureus L.) as test crop. The laboratory indices like isotopic distribution coefficient (Kd) of 115Cd in 0.1 M CaCl2, labile pool (LP) of Cd in DTPA–CaCl2–Na acetate (adjusted to pH 5.0, 6.0 and 7.0) and supply parameter (SP) using Kd as intensity and LP as capacity factor of Cd in soils, were computed to compare these values with actual uptake of Cd by the crop to test them as indices of Cd availability. The path-ways of transfer of soil Cd from the discrete chemical pools to plants were also computed. The LP (pH 7.0) and the SP were significantly correlated with the concentration of Cd in plants and its uptake by the crop. They are, therefore, good indices of Cd availability in sludge treated vertisol soils and can be used as reference indices for standarization of chemical extractants. The water soluble + exchangeable Cd and the 0.05 M EDTA extractable Cd were observed to be the two major chemical pools of Cd in soils responsible for supply of this element to plants. As substantial part of 0.1 M Na4P2O7 extractable Cd applied to the soils remains in same form, they are not transfered into the food chain. The amounts of soil Cd extracted by DTPA–CaCl2–TEA (pH 7.3), EDTA–NH4OAC (pH 7.3) and Mg(NO3)2 (pH 6.0) were significantly correlated with concentration of Cd in plants and with uptake of Cd by moong crop.  相似文献   
96.
Recycling and composting of organic materials such as animal waste, crop residues and green manures has a long tradition in China. In the past, the application of organic manures guaranteed a high return of organic materials and plant mineral nutrients and thus maintained soil fertility and crop yield. As a result of rapid economic development coupled with the increasing urbanization and labour costs, the recycling rate of organic materials in Chinese agriculture has dramatically declined during the last two decades, in particular in the more developed eastern and southeastern provinces of China. Improper handling and storage of the organic wastes is causing severe air and water pollution. Because farmers are using increasing amounts of mineral fertilizer, only 47% of the cropland is still receiving organic manure, which accounted for 18% of N,28% of P and 75% of K in the total nutrient input in 2000. Nowadays, the average proportion of nutrients (N+P+K) supplemented by organic manure in Chinese cropland is only 35% of the total amount of nutrients from both inorganic and organic sources.In China, one of the major causes is the increasing de-coupling of animal and plant production.This is occurring at a time when "re-coupling" is partly being considered in Western countries as a means to improve soil fertility and reduce pollution from animal husbandry. Re-coupling of modern animal and plant production is urgently needed in China. A comprehensive plan to develop intensive animal husbandry while taking into account the environmental impact of liquid and gaseous emissions and the nutrient requirements of the crops as well as the organic carbon requirements of the soil are absolutely necessary. As a consequence of a stronger consideration of ecological aspects in agriculture, a range of environmental standards has been issued and various legal initiatives are being taken in China. Their enforcement should be strictly monitored.  相似文献   
97.
Electricity production and modeling of microbial fuel cell (MFC) from continuous beer brewery wastewater was studied in this paper. A single air-cathode MFC was constructed, carbon fiber was used as anode and diluted brewery wastewater (COD = 626.58 mg/L) as substrate. The MFC displayed an open-circuit voltage of 0.578 V and a maximum power density of 9.52 W/m3 (264 mW/m2). Using the model based on polarization curve, various voltage losses were quantified. At current density of 1.79 A/m2, reaction kinetic loss and mass transport loss both achieved to 0.248 V; while ohmic loss was 0.046 V. Results demonstrated that it was feasible and stable for producing bioelectricity from brewery wastewater; while the most important factors which influenced the performance of the MFC are reaction kinetic loss and mass transport loss.  相似文献   
98.
99.
We investigated areas at the eastern fringe of Kolkata, Dhapa–a land filled with Municipal Solid Waste (MSW) land of West Bengal (India) for exploring nematode species diversity, abundance and dynamic at three sites practising different vegetable-based cropping sequences. The area sampled at monthly interval and the soil and root populations estimated at laboratory. The plant-parasitic nematode (PPN) species and free-living group (saprozoics) were estimated from soil. No differences in the diversity of nematode species and feeding groups among the sites in the MSW land were found but considerable variations in abundance and dynamics of PPNs were noted. All three sites at MSW, total PPNs outnumbered free-living nematodes in most of the samples but mononchids were less abundant. Saprozoic nematode index (SNI) was determined; SNI value was low (0.33–0.40) in this organic rich production system.  相似文献   
100.
Effective wastewater treatment using microbial fuel cells (MFCs) will require a better understanding of how operational parameters and solution chemistry affect treatment efficiency, but few studies have examined power generation using actual wastewaters. The efficiency of wastewater treatment of a beer brewery wastewater was examined here in terms of maximum power densities, Coulombic efficiencies (CEs), and chemical oxygen demand (COD) removal as a function of temperature and wastewater strength. Decreasing the temperature from 30°C to 20°C reduced the maximum power density from 205 mW/m2 (5.1 W/m3, 0.76 A/m2; 30°C) to 170 mW/m2 (20°C). COD removals (R COD) and CEs decreased only slightly with temperature. The buffering capacity strongly affected reactor performance. The addition of a 50-mM phosphate buffer increased power output by 136% to 438 mW/m2, and 200 mM buffer increased power by 158% to 528 mW/m2. In the absence of salts (NaCl), maximum power output varied linearly with wastewater strength (84 to 2,240 mg COD/L) from 29 to 205 mW/m2. When NaCl was added to increase conductivity, power output followed a Monod-like relationship with wastewater strength. The maximum power (P max) increased in proportion to the solution conductivity, but the half-saturation constant was relatively unaffected and showed no correlation to solution conductivity. These results show that brewery wastewater can be effectively treated using MFCs, but that achievable power densities will depend on wastewater strength, solution conductivity, and buffering capacity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号