首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5214篇
  免费   503篇
  国内免费   317篇
  2024年   11篇
  2023年   95篇
  2022年   104篇
  2021年   141篇
  2020年   233篇
  2019年   238篇
  2018年   190篇
  2017年   199篇
  2016年   217篇
  2015年   237篇
  2014年   243篇
  2013年   310篇
  2012年   229篇
  2011年   236篇
  2010年   209篇
  2009年   256篇
  2008年   295篇
  2007年   297篇
  2006年   231篇
  2005年   199篇
  2004年   195篇
  2003年   180篇
  2002年   200篇
  2001年   169篇
  2000年   126篇
  1999年   112篇
  1998年   116篇
  1997年   99篇
  1996年   75篇
  1995年   62篇
  1994年   96篇
  1993年   74篇
  1992年   58篇
  1991年   32篇
  1990年   46篇
  1989年   30篇
  1988年   40篇
  1987年   22篇
  1986年   17篇
  1985年   23篇
  1984年   21篇
  1983年   13篇
  1982年   9篇
  1981年   14篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   3篇
  1975年   4篇
  1973年   2篇
排序方式: 共有6034条查询结果,搜索用时 470 毫秒
51.
Genetic diversity of allozymes, genetic identity based on allozyme variability, and phylogenetic relationships were studied with respect to breeding system diversity, population size, and island age in 20 of the 29 species of Schiedea and Alsinidendron (Caryophyllaceae: Alsinoideae), a monophyletic lineage endemic to the Hawaiian Islands. Average levels of genetic variability in Schiedea and Alsinidendron were comparable to or higher than those found in other Hawaiian lineages for which equivalent data are available [Bidens, Tetramolopium, and the silversword alliance (Asteraceae: Madiinae)] and similar to average values for species of dicots. Allozyme variability was strongly dependent on breeding system, which varies widely in the Hawaiian Alsinoideae. Species with autogamous breeding systems showed very low variability, measured as the number of alleles per locus, percent polymorphic loci, and mean heterozygosity per locus. Outcrossing hermaphroditic and dimorphic species (those with gynodioecious, subdioecious, and dioecious breeding systems) showed significantly higher genetic variability. Small population size was associated with lower values for all measures of genetic variability. Nearly half of the species occurring in small populations are also autogamous; thus, both factors may have influenced levels of genetic variability in these species. Founder effect was apparent in one species (Schiedea adamantis), which occurs in a single large population, has a gynodioecious breeding system but a very low genetic variability. Island age appeared to have little effect on genetic variability. Slightly lower values of genetic variability for species occurring on Kaua'i and O'ahu result primarily from the occurrence of autogamous Alsinidendron species on those islands. Values for Nei's genetic identity for different species pairs were 0.201–0.942, a far greater range than in Bidens, the silversword alliance, and Tetramolopium. Using UPGMA clustering, there was only moderate support for relationships detected through cladistic analysis. Nei's unbiased genetic identity (I) was greatest among species with outcrossing breeding systems, which for the most part clustered together. Nei's genetic identities for self-fertilizing species were low, indicating that these species are less similar to one another and to outcrossing species, regardless of their affinities based on cladistic analysis. Parsimony analysis of allele frequency data supported two clades also found in phylogenetic analyses using morphological and molecular data. Clades recognized in parsimony analysis of allele frequencies were those lineages containing selfing species, indicating that conditions favoring fixation of alleles occurred in ancestral species. In contrast, maintenance of high genetic diversity in outcrossing species interferes with recognition of phylogenetic relationships using allozyme variability.  相似文献   
52.
It is known that few wheat cultivars maintain their resistance to rust diseases for a long period of time, particularly when crop populations become genetically more uniform. A number of genetically diverse, so far unexploited, sources of rust resistance in the natural as well as mutagenized population of wheat cultivars were identified. Several of these genes were placed in agronomically superior well-adapted backgrounds so that they could be used as pre-breeding stocks for introducing genetic diversity for resistance in a crop population. Some of these stocks when employed as parents in several cross combinations in a breeding programme have generated a number of promising cultivars with diversity for resistance.Many presently grown wheats in India, near-isogenic lines each with Lr14b, Lr14ab, Lr30 and certain international cultivars were identified as possessing diverse sources of adult plant resistance (APR) to leaf rust. Prolonged leaf rust resistance in some of the Indian cultivars was attributed to the likely presence of Lr34 either alone or in combination with other APR components. Tests of allelism carried out in certain cultivars that continue to show adequate levels of field resistance confirm the presence of Lr34, which explains the role that this gene has played in imparting durability for resistance to leaf rust. Also, Lr34 in combination with other APR components increases the levels of resistance, which suggests that combination of certain APR components should be another important strategy for breeding cultivars conferring durable and adequate levels of resistance. A new adult plant leaf rust resistance source that seems to be associated with durability in Arjun has been postulated. Likewise, cultivars possessing Sr2 in combination with certain other specific genes have maintained resistance to stem rust.Further, non-specific resistances that were transferred across widely different genotypes into two of the popular Indian wheats provided easily usable materials to the national breeding programmes for imparting durable resistance to stripe rust.  相似文献   
53.
In a medium-sized population ofArnica montana, a threatened species in The Netherlands, the breeding system, reproductive success and genetic clonal structure were studied. Pollination experiments suggested thatA. montana is largely self-incompatible. Inbreeding depression was observed for seedling weight but not for fruit weight and germination rate. Although genetic variation is rather low in this population, the data suggest an outcrossing mating system. Analysis of the genotype of all mapped rosettes in a plot of 100 m2 indicated that dense clusters often consist of identical genotypes, suggesting a clonal structure. Open clusters frequently contained several different genotypes. This may be caused by limited fruit dispersal, since seedlings were found mainly within or in the near surroundings of the clusters.  相似文献   
54.
Large-scale marker-assisted selection requires highly reproducible, consistent and simple markers. The use of genetic markers is important in woody plant breeding in general, and in apple in particular, because of the high level of heterozygosity present in Malus species. We present here the transformation of two RAPD markers, which we found previously to be linked to the major scab resistance gene Vf, into more reliable and reproducible markers that can be applied directly to apple breeding. We give an example of how the use of such markers can speed up selection for the introduction of scab resistance genes into the same plant, reducing labour and avoiding time-consuming test crosses. We discuss the nature and relationship of the scab resistance gene Vf to the one present in Nova Easygro, thought to be Vr.  相似文献   
55.
The usefulness of marker-assisted selection (MAS) to develop salt-tolerant breeding lines from a F2 derived from L. esculentum x L. pimpinellifolium has been studied. Interval mapping methodology of quantitative trait locus (QTL) analysis was used to locate more precisely previously detected salt tolerance QTLs. A new QTL for total fruit weight under salinity (TW) near TG24 was detected. Most of the detected QTLs [3 for TW, 5 for fruit number, (FN) and 4 for fruit weight (FW)] had low R 2 values, except the FW QTL in the TG180-TG48 interval, which explains 36.6% of the total variance. Dominant and overdominant effects were detected at the QTLs for TW, whereas gene effects at the QTLs for FJV and FW ranged from additive to partial dominance. Phenotypic selection of F2 familes and marker-assisted selection of F3 families were carried out. Yield under salinity decreased in the F2 generation. F3 means were similar to those of the F1 as a consequence of phentoypic selection. The most important selection response for every trait was obtained from the F3 to F4 where MAS was applied. While F3 variation was mainly due to the within-family component, in the F4 the FN and FW between-family component was larger than the within-family one, indicating an efficient compartmentalization and fixation of QTLs into the F4 families. Comparison of the yield of these families under control versus saline conditions showed that fruit weight is a key trait to success in tomato salt-tolerance improvement using wild Lycopersicon germplasm. The QTLs we have detected under salinity seem to be also working under control conditions, although the interaction family x treatment was significant for TW, thereby explaining the fact that the selected families responded differently to salinity.  相似文献   
56.
Population genetic theory suggests that mating designs employing one or more generations of sib-crossing or selfing prior to backcrossing are more effective than backcrossing alone for moving alleles across linkage groups where effective recombination rates are low (e.g., chromosomally divergent linkages). To test this hypothesis, we analyzed the effects of chromosomal structural differences and mating designs on the frequency and genomic distribution of introgressed markers using the domesticated sunflower, Helianthus annuus, and one of its wild relatives, H. petiolaris, as the experimental system. We surveyed 170 progeny, representing the end products of three different mating designs (design I, P-F1-BC1-BC2-F2-F3; design II, P-F1-F2-BC1-BC2-F3; and design III, P-F1-F2-F3-BC1-BC2), for 197 parental RAPD markers of known genomic location. Comparison of observed patterns of introgression with expectations based on simulations of unrestricted introgression revealed that much of the genome was protected from introgression regardless of mating design or chromosomal structural differences. Although the simulations indicated that all markers should introgress into multiple individuals in each of the three mating designs, 20 of 58 (34%) markers from collinear linkage groups, and 112 of 139 (81%) markers from rearranged linkage groups did not introgress. In addition, the average size of introgressed fragments (12.2 cM) was less than half that predicted by theoretical models (26–33 cM). Both of these observations are consistent with strong selection against introgressed linkage blocks, particularly in chromosomally divergent linkages. Nonetheless, mating designs II and III, which employed one and two generations of sib-mating, respectively, prior to backcrossing, were significantly more effective at moving alleles across both collinear and rearranged linkages than mating design I, in which the backcross generations preceded sib-mating. Thus, breeding strategies that include sib-crossing, in combination with backcrossing, should significantly increase the effectiveness of gene transfer across complex genic or chromosomal sterility barriers.  相似文献   
57.
Freshwater ostracodes show both an exceptionally high incidence of transitions to unisexuality and, in some cases, an extraordinary level of clonal diversity. There is no understanding of the agents promoting these transitions to thelytoky, although it has been suggested that their frequency may set the stage for sexual taxa to infuse clonal diversity into unisexuals. This study examines the nature and origins of clonal diversity in the unisexual ostracode Cyprinotus incongruens. A combination of allozyme and cytogenetic studies revealed the presence of two diploid clones of this species at three temperate sites and ten clones at one arctic site including three diploids, five triploids, and two tetraploids. The low heterozygosity (0%–20%) of its diploid clones suggests that parthenogenesis has arisen spontaneously in C. incongruens rather than through hybridization, as in vertebrate asexuals. Polyploid clones appear to owe their origin to genome additions from sexual taxa, although subsequent mutational divergence has played a role in further enhancing diversity. Two triploid clones have apparently originated from the incorporation of a haploid genome from the sexually reproducing C. glaucus, as evidenced by their high heterozygosity and possession of alleles otherwise found only in that species. Other polyploid clones have likely arisen as a result of interbreeding between bisexual and unisexual C. incongruens. These results suggest that both the incidence of spontaneous transitions to clonality and the frequency of interbreeding with relatives may be the key processes that govern clonal diversity in unisexual ostracodes.  相似文献   
58.
Manny  B. A.  Johnson  W. C.  Wetzel  R. G. 《Hydrobiologia》1994,279(1):121-132
Lakes and reservoirs provide water for human needs and habitat for aquatic birds. Managers of such waters may ask whether nutrients added by waterfowl degrade water quality. For lakes and reservoirs where primary productivity is limited by phosphorus (P), we developed a procedure that integrates annual P loads from waterfowl and other external sources, applies a nutrient load-response model, and determines whether waterfowl that used the lake or reservoir degraded water quality. Annual P loading by waterfowl can be derived from a figure in this report, using the days per year that each kind spent on any lake or reservoir. In our example, over 6500 Canada geese (Branta canadensis) and 4200 ducks (mostly mallards, Anas platyrhynchos) added 4462 kg of carbon (C), 280 kg of nitrogen (N), and 88 kg of P y–1 to Wintergreen Lake in southwestern Michigan, mostly during their migration. These amounts were 69% of all C, 27% of all N, and 70% of all P that entered the lake from external sources. Loads from all external sources totaled 840 mg P m–2 y–1. Application of a nutrient load-response model to this concentration, the hydraulic load (0.25 m y–1), and the water residence time (9.7 y) of Wintergreen Lake yielded an average annual concentration of total P in the lake of 818 mg m–3 that classified the lake as hypertrophic. This trophic classification agreed with independent measures of primary productivity, chlorophyll-a, total P, total N, and Secchi disk transparency made in Wintergreen Lake. Our procedure showed that waterfowl caused low water quality in Wintergreen Lake.Contribution 824 of the National Fisheries Research Center-Great Lakes, 1451 Green Road, Ann Arbor, Michigan 48105, U.S.A. and 722 of the Kellogg Biological Station, Michigan State University.  相似文献   
59.
Hanson  A.  Ellingwood  C.  Kerekes  J.  Smith  A. 《Hydrobiologia》1994,279(1):521-524
The Sackville Waterfowl Park, contains a 19 hectare shallow freshwater wetland created by reflooding a saltwater marsh that was drained three centuries ago. Its primary purpose is to provide wetland habitat and wildlife viewing opportunities to tourists and residents. This newly created, eutrophic wetland supports high densities of waterfowl, 2.1 and 3.3 brood ha–1 in 1991 and 1992 respectively. It is hoped that long term monitoring of the Park's waterfowl population and wetland habitat will contribute to a better understanding of factors controlling breeding waterfowl populations.  相似文献   
60.
The objectives of this study were two fold: (1) to determine whether divergent selection for kernel protein concentration, which produced the Illinois high protein (IHP), Illinois low protein (ILP), reverse low protein (RLP), and reverse high protein (RHP) maize (Zea mays L.) strains, had generated coupling-phase linkages among genes controlling protein concentration or other traits and (2) to measure the effectiveness of random mating in reducing linkage disequilibrium in segregating generations from crosses between the strains. To achieve these objectives, design III progenies from the F2 and F6 (produced by random mating the F2) from the crosses of IHP × ILP, IHP × RHP, ILP × RLP, and RHP × RLP were evaluated. Estimates of additive variance for percent protein in the crosses of IHP × ILP and ILP × RLP were significantly less in the F6 than in the F2 indicating the presence of coupling-phase linkages in the parents and their breakup by random mating. In addition, a significant reduction in dominance variance for grain yield from the F2 to the F6 in IHP × ILP suggested the presence of repulsion-phase linkages. No other evidence of coupling or repulsion-phase linkages was found for any of the traits measured. These results demonstrate the effectiveness of long-term divergent selection in the development of coupling-phase linkages and of random mating to dissipate linkage disequilibrium.Research supported by the Illinois Agricultural Experiment Station  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号