首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1739篇
  免费   100篇
  国内免费   65篇
  1904篇
  2024年   10篇
  2023年   28篇
  2022年   38篇
  2021年   55篇
  2020年   70篇
  2019年   61篇
  2018年   51篇
  2017年   62篇
  2016年   51篇
  2015年   63篇
  2014年   75篇
  2013年   105篇
  2012年   48篇
  2011年   67篇
  2010年   51篇
  2009年   74篇
  2008年   78篇
  2007年   87篇
  2006年   84篇
  2005年   64篇
  2004年   57篇
  2003年   60篇
  2002年   52篇
  2001年   43篇
  2000年   29篇
  1999年   29篇
  1998年   29篇
  1997年   31篇
  1996年   17篇
  1995年   37篇
  1994年   25篇
  1993年   23篇
  1992年   20篇
  1991年   20篇
  1990年   20篇
  1989年   17篇
  1988年   22篇
  1987年   18篇
  1986年   9篇
  1985年   14篇
  1984年   21篇
  1983年   8篇
  1982年   10篇
  1981年   8篇
  1980年   7篇
  1979年   11篇
  1978年   9篇
  1976年   14篇
  1975年   6篇
  1973年   6篇
排序方式: 共有1904条查询结果,搜索用时 0 毫秒
101.
102.
Data from 113 Dutch organic farms were analysed to determine the effect of cross-breeding on production and functional traits. In total, data on 33 788 lactations between January 2003 and February 2009 from 15 015 cows were available. Holstein–Friesian pure-bred cows produced most kg of milk in 305 days, but with the lowest percentages of fat and protein of all pure-bred cows in the data set. Cross-breeding Holstein dairy cows with other breeds (Brown Swiss, Dutch Friesian, Groningen White Headed, Jersey, Meuse Rhine Yssel, Montbéliarde or Fleckvieh) decreased milk production, but improved fertility and udder health in most cross-bred animals. In most breeds, heterosis had a significant effect (P < 0.05) on milk (kg in 305 days), fat and protein-corrected milk production (kg in 305 days) and calving interval (CI) in the favourable direction (i.e. more milk, shorter CI), but unfavourably for somatic cell count (higher cell count). Recombination was unfavourable for the milk production traits, but favourable for the functional traits (fertility and udder health). Farm characteristics, like soil type or housing system, affected the regression coefficients on breed components significantly. The effect of the Holstein breed on milk yield was twice as large in cubicle housing as in other housing systems. Jerseys had a negative effect on fertility only on farms on sandy soils. Hence, breed effects differ across farming systems in the organic farming and farmers can use such information to dovetail their farming system with the type of cow they use.  相似文献   
103.
Abstract Differences in heavy metal tolerance among separate populations of the same species have often been interpreted as local adaptation. Persistence of differences after removing the stressor indicates that mechanisms responsible for the increased tolerance were genetically determined. Drosophila subobscura Collin (Diptera: Drosophilidae) populations were sampled from two localities with different history of heavy metal pollution, and reared for eight generations in the laboratory on a standard medium and on media with different concentrations of lead (Pb). To determine whether flies from different natural populations exposed to the Pb‐contaminated media in the laboratory show population specific variability in fitness components over generations, experimental groups with different concentrations of lead were assayed in three generations (F2, F5, and F8) for fecundity, developmental time, and egg‐to‐adult viability. On the contaminated medium, fecundity was reduced in later generations and viability was increased, irrespective of the environmental origin of populations. For both populations, developmental time showed a tendency of slowing down on media with lead. Faster development was observed in later generations. Preadaptation to contamination, meaning higher fecundity, higher viability, and faster egg to adult development in all studied generations, was found in D. subobscura originating from the locality with a higher level of heavy metal pollution.  相似文献   
104.
105.
106.
107.
Recent empirical and conceptual papers have highlighted the potential for metabolism to act as a proximate mechanism for behavior that could explain animal personality (consistency over time). Under this hypothesis, individuals with consistently high levels of behavioral activity should also have high resting metabolic rate (RMR) as it can reflect capacity to process food and generate energy. We tested for the predicted positive covariance between RMR and three behaviors that differ in energy demands in 30 male guppies, using multivariate mixed models; we repeatedly measured their activity (10 times each), courtship displays (nine times), voracity (10 times), and metabolism (four‐times). Resting metabolic rate (measured overnight in respirometry trials) did not consistently differ among males, whereas initial peak metabolism measured during those same trials (= 0.42), and all behaviors were repeatable (= 0.33–0.51). RMR declined over time suggesting habituation to the protocol, whereas peak metabolism did not. Initial peak metabolism was negatively correlated with courtship display intensity, and voracity was positively correlated with activity, but all other among‐individual correlations were not significant. We conclude that RMR does not provide a proximate explanation for consistent individual differences in behavior in male guppies, and therefore the potential for independent evolution of these physiological and behavioral traits seems possible. Finally, we identify peak metabolism as a potential measure of the stress response to confinement, which highlights the value of considering various aspects of metabolic rates recording during respirometry trials.  相似文献   
108.
Species can adjust their traits in response to selection which may strongly influence species coexistence. Nevertheless, current theory mainly assumes distinct and time‐invariant trait values. We examined the combined effects of the range and the speed of trait adaptation on species coexistence using an innovative multispecies predator–prey model. It allows for temporal trait changes of all predator and prey species and thus simultaneous coadaptation within and among trophic levels. We show that very small or slow trait adaptation did not facilitate coexistence because the stabilizing niche differences were not sufficient to offset the fitness differences. In contrast, sufficiently large and fast trait adaptation jointly promoted stable or neutrally stable species coexistence. Continuous trait adjustments in response to selection enabled a temporally variable convergence and divergence of species traits; that is, species became temporally more similar (neutral theory) or dissimilar (niche theory) depending on the selection pressure, resulting over time in a balance between niche differences stabilizing coexistence and fitness differences promoting competitive exclusion. Furthermore, coadaptation allowed prey and predator species to cluster into different functional groups. This equalized the fitness of similar species while maintaining sufficient niche differences among functionally different species delaying or preventing competitive exclusion. In contrast to previous studies, the emergent feedback between biomass and trait dynamics enabled supersaturated coexistence for a broad range of potential trait adaptation and parameters. We conclude that accounting for trait adaptation may explain stable and supersaturated species coexistence for a broad range of environmental conditions in natural systems when the absence of such adaptive changes would preclude it. Small trait changes, coincident with those that may occur within many natural populations, greatly enlarged the number of coexisting species.  相似文献   
109.
Guanylyl cyclase C (GC‐C) is found in brain regions where dopamine is expressed. We characterized a mouse in which GC‐C was knocked out (KO) that was reported to be a model of attention deficit hyperactivity disorder (ADHD). We re‐examined this model and controlled for litter effects, used 16 to 23 mice per genotype per sex and assessed an array of behavioral and neurochemical outcomes. GC‐C KO mice showed no phenotypic differences from wild‐type mice on most behavioral tests, or on striatal or hippocampal monoamines, and notably no evidence of an ADHD‐like phenotype. KO mice were impaired on novel object recognition, had decreased tactile startle but not acoustic startle, and females had increased latency on cued training trials in the Morris water maze, but not hidden platform spatial learning trials. Open‐field activity showed small differences in females but not males. The data indicate that the GC‐C KO mouse with proper controls and sample sizes has a moderate cognitive and startle phenotype but has no ADHD‐like phenotype.  相似文献   
110.
Prostaglandin E2 (PGE2) is an endogenous lipid molecule involved in normal brain development. Cyclooxygenase‐2 (COX2) is the main regulator of PGE2 synthesis. Emerging clinical and molecular research provides compelling evidence that abnormal COX2/PGE2 signaling is associated with autism spectrum disorder (ASD). We previously found that COX2 knockout mice had dysregulated expression of many ASD genes belonging to important biological pathways for neurodevelopment. The present study is the first to show the connection between irregular COX2/PGE2 signaling and autism‐related behaviors in male and female COX2‐deficient knockin, (COX)‐2?, mice at young (4‐6 weeks) or adult (8‐11 weeks) ages. Autism‐related behaviors were prominent in male (COX)‐2? mice for most behavioral tests. In the open field test, (COX)‐2? mice traveled more than controls and adult male (COX)‐2? mice spent less time in the center indicating elevated hyperactive and anxiety‐linked behaviors. (COX)‐2? mice also buried more marbles, with males burying more than females, suggesting increased anxiety and repetitive behaviors. Young male (COX)‐2? mice fell more frequently in the inverted screen test revealing motor deficits. The three‐chamber sociability test found that adult female (COX)‐2? mice spent less time in the novel mouse chamber indicative of social abnormalities. In addition, male (COX)‐2? mice showed altered expression of several autism‐linked genes: Wnt2, Glo1, Grm5 and Mmp9. Overall, our findings offer new insight into the involvement of disrupted COX2/PGE2 signaling in ASD pathology with age‐related differences and greater impact on males. We propose that (COX)‐2? mice might serve as a novel model system to study specific types of autism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号