首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
  国内免费   4篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   12篇
  2013年   11篇
  2012年   9篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1997年   3篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有185条查询结果,搜索用时 156 毫秒
21.
Evidence in animal models indicates that signaling networks functioning in the developing pharyngeal arches regulate stereotyped processes critical for proper development of the aortic arch and cardiac outflow tract. Here, we describe the phenotype of mice lacking fibroblast growth factor 15 (Fgf15), which encodes a secreted signaling molecule expressed within the developing pharyngeal arches. Homozygous Fgf15 mutants present heart defects consistent with malalignment of the aorta and pulmonary trunk. These defects correlate with early morphological defects of the outflow tract due to aberrant behavior of the cardiac neural crest. We demonstrate that Fgf15 expression within the pharyngeal arches is unaltered by a loss of Tbx1, a key regulator of pharyngeal arch development implicated in DiGeorge syndrome. In addition, Fgf15 and Tbx1 do not interact genetically, suggesting that Fgf15 operates through a pathway independent of Tbx1. These studies reveal a novel role of Fgf15 during development of the cardiac outflow tract.  相似文献   
22.
FGF8 has been shown to play important morphoregulatory roles during embryonic development. The observation that craniofacial, cardiovascular, pharyngeal, and neural phenotypes vary with Fgf8 gene dosage suggests that FGF8 signaling induces differences in downstream responses in a dose-dependent manner. In this study, we investigated if FGF8 plays a dose-dependent regulatory role during embryonic submandibular salivary gland (SMG) morphogenesis. We evaluated SMG phenotypes of Fgf8 hypomorphic mice, which have decreased Fgf8 gene function throughout embryogenesis. We also evaluated SMG phenotypes of Fgf8 conditional mutants in which Fgf8 function has been completely ablated in its expression domain in the first pharyngeal arch ectoderm from the time of arch formation. Fgf8 hypomorphs have hypoplastic SMGs, whereas conditional mutant SMGs exhibit ontogenic arrest followed by involution and are absent by E18.5. SMG aplasia in Fgf8 ectoderm conditional mutants indicates that FGF8 signaling is essential for the morphogenesis and survival of Pseudoglandular Stage and older SMGs. Equally important, the presence of an initial SMG bud in Fgf8 conditional mutants indicates that initial bud formation is FGF8 independent. Mice heterozygous for either the Fgf8 null allele (Fgf8(+/N)) or the hypomorphic allele (Fgf8(+/H)) have SMGs that are indistinguishable from wild-type (Fgf8(+/+)) mice which suggest that there is not only an FGF8 dose-dependent phenotypic response, but a nonlinear, threshold-like, epistatic response as well. We also found that enhanced FGF8 signaling induced, and abrogated FGF8 signaling decreased, SMG branching morphogenesis in vitro. Furthermore, since FGF10 and Shh expression is modulated by Fgf8 levels, we postulated that exogenous FGF10, Shh, or FGF10 + Shh peptide supplementation in vitro would largely "rescue" the abnormal SMG phenotype associated with decreased FGF8 signaling. This is as expected, though there is no synergistic effect with FGF10 + Shh peptide supplementation. These in vitro experiments model the principle that mutations have different effects in the context of different epigenotypes.  相似文献   
23.
24.
25.
Growth and Differentiation Factor 1 (GDF-1) has been implicated in left-right patterning of the mouse embryo but has no other known function. Here, we demonstrate a genetic interaction between Gdf1 and Nodal during anterior axis development. Gdf1-/-;Nodal+/- mutants displayed several abnormalities that were not present in either Gdf1-/- or Nodal+/- single mutants, including absence of notochord and prechordal plate, and malformation of the foregut; organizing centers implicated in the development of the anterior head and branchial arches, respectively. Consistent with these deficits, Gdf1-/-;Nodal+/- mutant embryos displayed a number of axial midline abnormalities, including holoprosencephaly, anterior head truncation, cleft lip, fused nasal cavity, and lack of jaws and tongue. The absence of these defects in single mutants indicated a synergistic interaction between Nodal and GDF-1 in the node, from which the axial mesendoderm that gives rise to the notochord, prechordal plate, and foregut endoderm originates, and where the two factors are co-expressed. This notion was supported by a severe downregulation of FoxA2 and goosecoid in the anterior primitive streak of double mutant embryos. Unlike that in the lateral plate mesoderm, Nodal expression in the node was independent of GDF-1, indicating that both factors act in parallel to control the development of mesendodermal precursors. Receptor reconstitution experiments indicated that GDF-1, like Nodal, can signal through the type I receptors ALK4 and ALK7. However, analysis of compound mutants indicated that ALK4, but not ALK7, was responsible for the effects of GDF-1 and Nodal during anterior axis development. These results indicate that GDF-1 and Nodal converge on ALK4 in the anterior primitive streak to control the formation of organizing centers that are necessary for normal forebrain and branchial arch development.  相似文献   
26.
Randel, N. and Bick, A. 2011. Development, morphology and ultrastructure of the branchial crown of Fabricia stellaris (Müller, 1774) (Polychaeta: Sabellida: Fabriciinae). —Acta Zoologica (Stockholm) 93 : 409–421. Sabellidae and Serpulidae are well‐known tube‐building polychaetes with a distinctive and often spectacularly colourful branchial crown. Morphological investigations suggest that these taxa form the monophyletic clade Sabellida, with the adelphotaxa Sabellidae and Serpulidae, but the relationship between these taxa remains ambiguous. Molecular investigations have indicated that the Fabriciinae, major taxon of Sabellidae, belongs to Serpulidae, thereby making Sabellidae paraphyletic; however, morphological characters are absent to support this result. We investigate the development, anatomy and ultrastructure of the branchial crown of Fabricia stellaris (Müller, 1774), describing morphological characteristics useful not only for constructing morphological phylogenies but also for understanding the evolution of the branchial crown. The morphology of the radioles and pinnules does not differ from each other. The supporting tissue of the branchial crown consists of myoepithelial cells and a solid extracellular matrix (ECM). Both ciliated and non‐ciliated cells form the epidermal layer; ciliated cells shape the food groove. Most important is the result that radioles and pinnules within Sabellida may not be homologous, because the morphology and the branching of radioles and pinnules are completely different between Sabellinae, Fabriciinae and Serpulidae. The terms ‘primary branch’ for radioles and ‘secondary branch’ for pinnules are proposed for Fabriciinae. The phylogeny of the Sabellida is discussed.  相似文献   
27.
The high level of immunogenicity of peptides displayed in dense repetitive arrays on virus-like particles makes recombinant VLPs promising vaccine carriers. Here, we describe a platform for vaccine development based on the VLPs of RNA bacteriophage MS2. It serves for the engineered display of specific peptide sequences, but will also allow the construction of random peptide libraries from which specific binding activities can be recovered by affinity selection. Peptides representing the V3 loop of HIV gp120 and the ECL2 loop of the HIV coreceptor, CCR5, were inserted into a surface loop of MS2 coat protein. Both insertions disrupted coat VLP assembly, apparently by interfering with protein folding, but these defects were suppressed efficiently by genetically fusing coat protein's two identical polypeptides into a single-chain dimer. The resulting VLPs displayed the V3 and ECL2 peptides on their surfaces where they showed the potent immunogenicity that is the hallmark of VLP-displayed antigens. Experiments with random-sequence peptide libraries show the single-chain dimer to be highly tolerant of six, eight and ten amino acid insertions. MS2 VLPs support the display of a wide diversity of peptides in a highly immunogenic format, and they encapsidate the mRNAs that direct their synthesis, thus establishing the genotype/phenotype linkage necessary for recovery of affinity-selected sequences. The single-chain MS2 VLP therefore unites in a single structural platform the selective power of phage display with the high immunogenicity of VLPs.  相似文献   
28.
Nie X  Deng CX  Wang Q  Jiao K 《Developmental biology》2008,316(2):417-430
TGFβ/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFβ/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2α, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFβ/BMP signals are essential for appropriate NCC development.  相似文献   
29.
Our previous study demonstrated that the immunization with a cycloimmunogen derived from extracellular loop-2 (ECL-2) of CCR5 (cDDR5) attenuated acute phase of CCR5-tropic simian-human immunodeficiency virus (SHIV)SF162P3 replication in vivo. Although the study showed that the antisera raised against cDDR5 reacted with cell-expressed CCR5, we have not yet demonstrated whether the antisera can react with virion-incorporated CCR5. Here, we show that rhesus cDDR5 (rcDDR5)-specific antibodies react with not only cell-expressed but also virion-incorporated simian CCR5s (siCCR5s), but may predominantly exert their inhibitory effects on simian immunodeficiency virus (SIV) infection by the binding of cell-expressed rather than virion-incorporated CCR5s. These results suggest that the virion-incorporated CCR5 may contribute to the reactivation of the anti-rcDDR5 antibody-producing B-cells by SIV particles after rcDDR5 immunization, although the binding of anti-rcDDR5 antibody to virion-incorporated CCR5 results in a partial inhibitory effect on SIV infection.  相似文献   
30.
Stroke is the most devastating complication after ventricular assist device (VAD) implantation with a 19% incidence and 65% mortality in the pediatric population. Current pediatric VAD technology and anticoagulation strategies alone are suboptimal. VAD implantation assisted by computational methods (CFD) may contribute reducing the risk of cerebral embolization. Representative three-dimensional aortic arch models of an infant and a child were generated. An 8 mm VAD outflow-graft (VAD-OG) anastomosed to the aorta was rendered and CFD was applied to study blood flow patterns. Particle tracks, originating in the VAD, were computed with a Lagrangian phase model and the percentage of particles entering the cerebral vessels was calculated. Eight implantation configurations (infant = 5 and child = 3) and 5 particle sizes (0.5, 1, 2, 3, and 4 mm) were considered. For the infant model, percentage of particles entering the cerebral vessels ranged from 15% for a VAD-OG anastomosed at 90° to the aorta, to 31% for 30° VAD-OG anastomosis (overall percentages: X2 = 10,852, p < 0.0001). For the child model, cerebral embolization ranged from 9% for the 30° VAD-OG anastomosis to 15% for the 60° anastomosis (overall percentages: χ2 = 10,323, p < 0.0001). Using detailed CFD calculations, we demonstrate that the risk of stroke depends significantly on the VAD implantation geometry. In turn, the risk probably depends on patient-specific anatomy. CFD can be used to optimize VAD implantation geometry to minimize stroke risk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号