首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   12篇
  国内免费   4篇
  185篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   1篇
  2016年   6篇
  2015年   4篇
  2014年   12篇
  2013年   11篇
  2012年   9篇
  2011年   9篇
  2010年   11篇
  2009年   7篇
  2008年   7篇
  2007年   9篇
  2006年   8篇
  2005年   7篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1997年   3篇
  1996年   5篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有185条查询结果,搜索用时 0 毫秒
101.
Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.  相似文献   
102.
103.
104.
Branchial arch muscle innervation by the glossopharyngeal (IX) and vagal (X) nerves in 10 tetraodontiform families and five outgroup taxa was examined, with special reference to muscle homologies. Basic innervation patterns and their variations were described for all muscle elements (except gill filament muscles). In the tetraodontids Takifugu poecilonotus and Canthigaster rivulata, diodontid Diodon holocanthus, and molid Mola mola, levator externus 4 was innervated by the 3rd vagal branchial trunk (BX3) in addition to BX2, owing to strong posterior expansion of the muscle. Based on nerve innervation, migrations of the muscle attachment sites (i.e., origins and insertions) were recognized in levator internus 2 (in Mola mola), obliquus dorsalis 3 (in Ostracion immaculatus and Canthigaster rivulata), and obliquus ventralis 2 (in Stephanolepis cirrhifer), muscle topologies not necessarily being indicative of homologies. Embryonic origin of the retractor dorsalis and parallel attainment of the swimbladder muscle within the order were also discussed.  相似文献   
105.
This study concerns secular changes of the foot of Japanese, from the prehistoric Jomon period to early modern times. The size of the talus, calcaneus and first metatarsal changed in parallel with the estimated stature, during this period. In the case of the calcanues, length-height-index, length-tuberosity height-index, Böhler's tuber-joint angle and angle of cuboidal articular surface gradually increased with time. Thus, all may take part in elevation of the longitudinal arch. With time, the relative height of the subtalar, talonavicular, cuneonavicular and first tarsometatarsal joints in the reconstructed medial arch enlarged, in parallel with the increase in the inclination angles of both the calcaneus and the first metatarsal. In addition, valgus deviation of the distal phalanx of the great toe became conspicuous in comparatively recent times. These changes no doubt were accelerated by modification in life style.  相似文献   
106.
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm–mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal–mesenchymal interaction and a novel genetic factor for cleft palate.  相似文献   
107.
Vertebrate Hox clusters contain protein-coding genes that regulate body axis development and microRNA (miRNA) genes whose functions are not yet well understood. We overexpressed the Hox cluster microRNA miR-196 in zebrafish embryos and found four specific, viable phenotypes: failure of pectoral fin bud initiation, deletion of the 6th pharyngeal arch, homeotic aberration and loss of rostral vertebrae, and reduced number of ribs and somites. Reciprocally, miR-196 knockdown evoked an extra pharyngeal arch, extra ribs, and extra somites, confirming endogenous roles of miR-196. miR-196 injection altered expression of hox genes and the signaling of retinoic acid through the retinoic acid receptor gene rarab. Knocking down rarab mimicked the pectoral fin phenotype of miR-196 overexpression, and reporter constructs tested in tissue culture and in embryos showed that the rarab 3′UTR is a miR-196 target for pectoral fin bud initiation. These results show that a Hox cluster microRNA modulates development of axial patterning similar to nearby protein-coding Hox genes, and acts on appendicular patterning at least in part by modulating retinoic acid signaling.  相似文献   
108.
109.
The cardiac neural crest cells (CNCCs) have played an important role in the evolution and development of the vertebrate cardiovascular system: from reinforcement of the developing aortic arch arteries early in vertebrate evolution, to later orchestration of aortic arch artery remodeling into the great arteries of the heart, and finally outflow tract septation in amniotes. A critical element necessary for the evolutionary advent of outflow tract septation was the co‐evolution of the cardiac neural crest cells with the second heart field. This review highlights the major transitions in vertebrate circulatory evolution, explores the evolutionary developmental origins of the CNCCs from the third stream cranial neural crest, and explores candidate signaling pathways in CNCC and outflow tract evolution drawn from our knowledge of DiGeorge Syndrome. Birth Defects Research (Part C) 102:309–323, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   
110.
Proper development of taste organs including the tongue and taste papillae requires interactions with the underlying mesenchyme through multiple molecular signaling pathways. The effects of bone morphogenetic proteins (BMPs) and antagonists are profound, however, the tissue‐specific roles of distinct receptors are largely unknown. Here, we report that constitutive activation (ca) of ALK2‐BMP signaling in the tongue mesenchyme (marked by Wnt1‐Cre) caused microglossia—a dramatically smaller and misshapen tongue with a progressively severe reduction in size along the anteroposterior axis and absence of a pharyngeal region. At E10.5, the tongue primordia (branchial arches 1–4) formed in Wnt1‐Cre/caAlk2 mutants while each branchial arch responded to elevated BMP signaling distinctly in gene expression of BMP targets (Id1, Snai1, Snai2, and Runx2), proliferation (Cyclin‐D1) and apoptosis (p53). Moreover, elevated ALK2‐BMP signaling in the mesenchyme resulted in apparent defects of lingual epithelium, muscles, and nerves. In Wnt1‐Cre/caAlk2 mutants, a circumvallate papilla was missing and further development of formed fungiform papillae was arrested in late embryos. Our data collectively demonstrate that ALK2‐BMP signaling in the mesenchyme plays essential roles in orchestrating various tissues for proper development of the tongue and its appendages in a region‐specific manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号