首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4483篇
  免费   195篇
  国内免费   129篇
  4807篇
  2023年   31篇
  2022年   76篇
  2021年   55篇
  2020年   84篇
  2019年   135篇
  2018年   123篇
  2017年   87篇
  2016年   79篇
  2015年   66篇
  2014年   269篇
  2013年   278篇
  2012年   179篇
  2011年   243篇
  2010年   209篇
  2009年   194篇
  2008年   264篇
  2007年   234篇
  2006年   184篇
  2005年   192篇
  2004年   135篇
  2003年   108篇
  2002年   110篇
  2001年   109篇
  2000年   71篇
  1999年   70篇
  1998年   96篇
  1997年   76篇
  1996年   77篇
  1995年   31篇
  1994年   57篇
  1993年   44篇
  1992年   33篇
  1991年   49篇
  1990年   31篇
  1989年   40篇
  1988年   41篇
  1987年   22篇
  1986年   27篇
  1985年   71篇
  1984年   102篇
  1983年   75篇
  1982年   86篇
  1981年   49篇
  1980年   43篇
  1979年   51篇
  1978年   34篇
  1977年   29篇
  1976年   15篇
  1975年   11篇
  1974年   12篇
排序方式: 共有4807条查询结果,搜索用时 0 毫秒
111.
Olfactory ensheathing cells (OECs) are glial cells in the olfactory system with morphological and functional plasticity. Cultured OECs have the flattened and process-bearing shape. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of their morphological plasticity remains elusive. Using RhoA FRET biosensor, we found that the active RhoA signal mainly distributed in the lamellipodia and/or filopodia of OECs. Local disruption of these active RhoA distributions led to the morphological change from the flattened into process-bearing shape and promoted process outgrowth. Furthermore, RhoA pathway inhibitors, Toxin-B, C3, Y-27632 or over-expression of DN-RhoA blocked serum-induced morphological change of OECs from the process-bearing into flattened shape, whereas the activation of RhoA pathway by lysophosphatidic acid (LPA) promoted the morphological change from the process-bearing into flattened shape. Finally, ROCK–Myosin–F-actin as a downstream of RhoA pathway was involved in morphological plasticity of OECs. Taken together, these results suggest that RhoA–ROCK–Myosin pathway mediates the morphological plasticity of cultured OECs in response to extracellular cues.  相似文献   
112.
The MA (matrix) domain of the retroviral Gag polyprotein plays several critical roles during virus assembly. Although best known for targeting the Gag polyprotein to the inner leaflet of the plasma membrane for virus budding, recent studies have revealed that MA also contributes to selective packaging of the genomic RNA (gRNA) into virions. In this Review, we summarize recent progress in understanding how MA participates in genome incorporation. We compare the mechanisms by which the MA domains of different retroviral Gag proteins influence gRNA packaging, highlighting variations and similarities in how MA directs the subcellular trafficking of Gag, interacts with host factors and binds to nucleic acids. A deeper understanding of how MA participates in these diverse functions at different stages in the virus assembly pathway will require more detailed information about the structure of the MA domain within the full-length Gag polyprotein. In particular, it will be necessary to understand the structural basis of the interaction of MA with gRNA, host transport factors and membrane phospholipids. A better appreciation of the multiple roles MA plays in genome packaging and Gag localization might guide the development of novel antiviral strategies in the future.  相似文献   
113.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
114.
Transmissible spongiform encephalopathies (TSEs), otherwise known as prion disorders, are fatal diseases causing neurodegeneration in a wide range of mammalian hosts, including humans. The causative agents - prions - are thought to be composed of a rogue isoform of the endogenous prion protein (PrP). Beyond these and other basic concepts, fundamental questions in prion biology remain unanswered, such as the physiological function of PrP, the molecular mechanisms underlying prion pathogenesis, and the origin of prions. To date, the occurrence of TSEs in lower vertebrates like fish and birds has received only limited attention, despite the fact that these animals possess bona fide PrPs. Recent findings, however, have brought fish before the footlights of prion research. Fish models are beginning to provide useful insights into the roles of PrP in health and disease, as well as the potential risk of prion transmission between fish and mammals. Although still in its infancy, the use of fish models in TSE research could significantly improve our basic understanding of prion diseases, and also help anticipate risks to public health. This article is part of a Special Issue entitled Zebrafish Models of Neurological Diseases.  相似文献   
115.
小鼠卵激活过程中胞质游离Ca~(2 )的变化及孤雌发育研究   总被引:1,自引:0,他引:1  
乙醇和电刺激均可使小鼠MⅡ期卵母细胞激活并在体外孤雌发育至囊胚。小鼠卵对乙醇十分敏感。用7%—8%乙醇处理5min后95%以上的卵母细胞(卵龄为HCG注射后18—19h)内形成原核。3—4次电刺激后卵的激活率为71.58%;仅刺激1次卵的激活率为63.63%。乙醇刺激可诱导卵内游离Ca~(2 )浓度出现多次升高;单一电刺激仅能诱导卵内游离Ca~(2 )浓度出现1次升高;多次电刺激可诱导卵内游离Ca~(2 )浓度多次升高,而且电刺激次数与Ca~(2 )浓度升高成一一对应关系。对于电刺激,介质中足够量的Ca~(2 )对卵激活至关重要。在无Ca~(2 )的介质中,电刺激很难使卵激活。正常受精刺激诱导卵内游离Ca~(2 )浓度出现多次有规律的升高。实验结果表明,卵母细胞激活过程中胞质游离Ca~(2 )浓度重复多次升高可促使卵母细胞恢复成熟分裂。  相似文献   
116.
TachykininfamilyisagroupofneuropeptideswithsimilarCterminalsequencesandrelatedbioactivities.ThemajortachykininsinmammalianaresubstanceP(SP),neurokininA(NKA)andneurokininB(NKB).Correspondingtothesepeptides,threedistincttachykininreceptorswerediscoveredandn…  相似文献   
117.
The spindle behavior and MPF activity changes in the progression of oocyte maturation were investigated and compared with cytological observation and kinase assay between gynogenetic silver crucian carp and amphimictic colored crucian carp.MPF activity was measured by using histone H1 as phosphorylation substrate.There were two similar oscillatory MPF kinase activity changes during oocyte maturation in two kinds of fishes with different reproductive modes,but there existed some subtle difference between them.The subtle difference was that the first peak of MPF kinase activity was kept to a longerlasting time in the gynogenetic silver crucian carp than in the amphimictic colored crucian carp.It was suggested that the difference may be related to the spindle behavior changes,such as tripolar spindle formation and spindle rearrangement in the gynogenetic crucian carp.  相似文献   
118.
In vivo interactions of acrylonitrile with macromolecules in rats   总被引:1,自引:0,他引:1  
The irreversible binding of [2,3-14C]acrylonitrile (VCN) to proteins, RNA and DNA of various tissues of male Sprague-Dawley rats after a single oral dose of 46.5 mg/kg (0.5 LD50) has been studied. Proteins were isolated by chloroform-isoamyl alcohol-phenol extraction. RNA and DNA were separated by hydroxyapatite chromatography. Binding of VCN to proteins was extensive and was time dependent. Radioactivity in nucleic acids was registered in the liver and the target organs, stomach and brain. DNA alkylation, which increased by time, was significantly higher in the target organs, brain and stomach (119 and 81 pmol/mg, respectively, at 24 h) than that in the liver. The covalent binding indices for the liver, stomach and brain at 24 h after dosing were, 5.9, 51.9 and 65.3, respectively. These results suggest that VCN is able to act as a multipotent carcinogen by alkylation of DNA in the extrahepatic target tissues, stomach and brain.  相似文献   
119.
120.
GPR84 is a recently de-orphanized member of the G-protein coupled receptor (GPCR) family recognizing medium chain fatty acids, and has been suggested to play important roles in inflammation. Due to the lack of potent and selective GPR84 ligands, the basic knowledge related to GPR84 functions is very limited. In this study, we have characterized the GPR84 activation profile and regulation mechanism in human phagocytes, using two recently developed small molecules that specifically target GPR84 agonistically (ZQ16) and antagonistically (GLPG1205), respectively. Compared to our earlier characterization of the short chain fatty acid receptor FFA2R which is functionally expressed in neutrophils but not in monocytes, GPR84 is expressed in both cell types and in monocyte-derived macrophages. In neutrophils, the GPR84 agonist had an activation profile very similar to that of FFA2R. The GPR84-mediated superoxide release was low in naïve cells, but the response could be significantly primed by TNFα and by the actin cytoskeleton disrupting agent Latrunculin A. Similar to that of FFA2R, a desensitization mechanism bypassing the actin cytoskeleton was utilized by GPR84. All ZQ16-mediated cellular responses were sensitive to GLPG1205, confirming the GPR84-dependency. Finally, our data of in vivo transmigrated tissue neutrophils indicate that both GPR84 and FFA2R are involved in neutrophil recruitment processes in vivo.In summary, we show functional similarities but also some important differences between GPR84 and FFA2R in human phagocytes, thus providing some mechanistic insights into GPR84 regulation in blood neutrophils and cells recruited to an aseptic inflammatory site in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号