首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1573篇
  免费   117篇
  国内免费   62篇
  2023年   16篇
  2022年   21篇
  2021年   24篇
  2020年   29篇
  2019年   41篇
  2018年   43篇
  2017年   36篇
  2016年   46篇
  2015年   47篇
  2014年   69篇
  2013年   76篇
  2012年   51篇
  2011年   39篇
  2010年   52篇
  2009年   67篇
  2008年   86篇
  2007年   89篇
  2006年   66篇
  2005年   74篇
  2004年   65篇
  2003年   57篇
  2002年   47篇
  2001年   55篇
  2000年   42篇
  1999年   40篇
  1998年   32篇
  1997年   37篇
  1996年   33篇
  1995年   25篇
  1994年   32篇
  1993年   36篇
  1992年   26篇
  1991年   27篇
  1990年   20篇
  1989年   24篇
  1988年   11篇
  1987年   14篇
  1986年   20篇
  1985年   19篇
  1984年   19篇
  1983年   19篇
  1982年   18篇
  1981年   11篇
  1980年   10篇
  1979年   11篇
  1977年   6篇
  1975年   5篇
  1974年   4篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1752条查询结果,搜索用时 31 毫秒
131.
Fertilization by aged sperm can result in adverse fitness consequences for both males and females. Sperm storage during male sexual rest could provide an environment for post‐meiotic sperm senescence causing a deterioration in the quality of stored sperm, possibly impacting on both sperm performance (e.g. swimming ability) and DNA quality. Here, we compared the proportion of sperm with fragmented DNA, an indicator of structural damage of DNA within the sperm cell, among males that had been sexually rested for approximately 2 months, to that of males that had mated recently. We found no evidence of intra‐epididymal sperm DNA damage or any impairment in sperm performance, and consequently no evidence of post‐meiotic sperm senescence. Our results suggest that male house mice are likely to possess mechanisms that function to ensure that their sperm reserves remain stocked with ‘young’, viable sperm during periods of sexual inactivity. We also discuss the possibility that our experimental design leads to no difference in the age of sperm among males from the two mating treatments. Post‐meiotic sperm senescence is especially relevant under sperm competition. Thus, we sourced mice from populations that differed in their levels of post‐copulatory sexual selection, enabling us to gain insight into how selection for higher sperm production influences the rate of sperm ageing and levels of DNA fragmentation. We found that males from the population that produced the highest number of sperm also had the smallest proportion of DNA‐fragmented sperm and discuss this outcome in relation to selection acting upon males to ensure that they produce ejaculates with high‐quality sperm that are successful in achieving fertilizations under competitive conditions.  相似文献   
132.
In nonpedigreed wild populations, inbreeding depression is often quantified through the use of heterozygosity-fitness correlations (HFCs), based on molecular estimates of relatedness. Although such correlations are typically interpreted as evidence of inbreeding depression, by assuming that the marker heterozygosity is a proxy for genome-wide heterozygosity, theory predicts that these relationships should be difficult to detect. Until now, the vast majority of empirical research in this area has been performed on generally outbred, nonbottlenecked populations, but differences in population genetic processes may limit extrapolation of results to threatened populations. Here, we present an analysis of HFCs, and their implications for the interpretation of inbreeding, in a free-ranging pedigreed population of a bottlenecked species: the endangered takahe (Porphyrio hochstetteri). Pedigree-based inbreeding depression has already been detected in this species. Using 23 microsatellite loci, we observed only weak evidence of the expected relationship between multilocus heterozygosity and fitness at individual life-history stages (such as survival to hatching and fledging), and parameter estimates were imprecise (had high error). Furthermore, our molecular data set could not accurately predict the inbreeding status of individuals (as 'inbred' or 'outbred', determined from pedigrees), nor could we show that the observed HFCs were the result of genome-wide identity disequilibrium. These results may be attributed to high variance in heterozygosity within inbreeding classes. This study is an empirical example from a free-ranging endangered species, suggesting that even relatively large numbers (>20) of microsatellites may give poor precision for estimating individual genome-wide heterozygosity. We argue that pedigree methods remain the most effective method of quantifying inbreeding in wild populations, particularly those that have gone through severe bottlenecks.  相似文献   
133.
Four populations of Saponaria bellidifolia situated at the species’ northern range periphery (Apuseni Mountains, southeastern Carpathians) were monitored over a period of 5 years. They were chosen to represent different habitat types (rocky, fixed screes, open screes and grassy), disturbance regime (fire), and population sizes (categorized as large and small). The reproductive effort was quantified, and matrix models were used to describe the population dynamics and to assess population viability. Saponaria bellidifolia had very stable population dynamics in the harsh and stable abiotic conditions of the outcrops where populations occur. Habitat conditions exerted a notable influence on the species’ population reproductive performance, growth rate, and vital rates, whereas population size and climate did not have a clear-cut effect on the dynamics of the species. Saponaria bellidifolia maintains viable populations in the southeastern Carpathians, at its northern range periphery.  相似文献   
134.
Genetic variability in stress tolerance (heat, desiccation, and hypoxia) and fitness (virulence and reproduction potential) among natural populations of Steinernema carpocapsae was assessed by estimating phenotypic differences. Significant differences were observed in stress tolerance among populations. Populations isolated from North Carolina showed significantly more stress tolerance than those isolated from Ohio. Significant differences were also observed in populations isolated from the same locality. Survival of infective juveniles after exposure to 40°C for 2 h ranged from 37 to 82%. A threefold difference was observed in infective juvenile survival following exposure to osmotic desiccation or hypoxic condition. Several populations tested were superior to the most widely used strain (‘All’ strain) in stress tolerance traits, with one population KMD33, being superior to the ‘All’ strain in all traits. Fitness as expressed by virulence and reproductive potential differed significantly among populations but showed less variability than the stress tolerance traits. All populations tested had a reproductive potential greater than or similar to that of the ‘All’ strain and most of them caused >60% insect mortality of the wax moth larvae, Galleria mellonella. The high genetic variability in stress tolerance among natural populations suggests the feasibility of using selection for genetic improvement of these traits.  相似文献   
135.
136.
We forecasted spatially structured population models with complex dynamics, focusing on the effect of dispersal and spatial scale on the predictive capability of nonlinear forecasting (NLF). Dispersal influences NLF ability by its influence on population dynamics. For simple 2-cell models, when dispersal is small, our ability to predict abundance in subpopulations decreased and then increased with increasing dispersal. Spatial heterogeneity, dispersal manner, and environmental noise did not qualitatively change this result. But results are not clear for complex spatial configurations because of complicated dispersal interactions across subpopulations. Populations undergoing periodic fluctuations could be forecasted perfectly for all deterministic cases that we studied, but less reliably when environmental noise was incorporated. More importantly, for all models that we have examined, NLF was much worse at larger spatial scales as a consequence of the asynchronous dynamics of subpopulations when the dispersal rate was below some critical value. The only difference among models was the critical value of dispersal rate, which varied with growth rate, carrying capacity, mode of dispersal, and spatial configuration. These results were robust even when environmental noise was incorporated. Intermittency, common in the dynamics of spatially structured populations, lowered the predictive capability of NLF. Forecasting population behaviour is of obvious value in resource exploitation and conservation. We suggest that forecasting at local scales holds promise, whereas forecasting abundance at regional scales may yield poor results. Improved understanding of dispersal can enhance the management and conservation of natural resources, and may help us to understand resource-exploitation strategies employed by local indigenous humans.  相似文献   
137.
The paper deals with optimal control in a linear integral age-dependent model of population dynamics. A problem for maximizing the harvesting return on a finite time horizon is formulated and analyzed. The optimal controls are the harvesting age and the rate of population removal by harvesting. The gradient and necessary condition for an extremum are derived. A qualitative analysis of the problem is provided. The model shows the presence of a zero-investment period. A preliminary asymptotic analysis indicates possible turnpike properties of the optimal harvesting age. Biological interpretation of all results is provided.  相似文献   
138.
We examined spatial genetic structure within eight populations of Sitka spruce classified as core or peripheral based on ecological niche, and continuous or disjunct based on species distribution. In each population, 200 trees were spatially mapped and genotyped for eight cDNA-based sequence tagged site (STS) codominant markers. Spatial autocorrelation was assessed by estimating p(ij), the average co-ancestry coefficient, between individuals within distance intervals. The distribution of alleles and genotypes within core populations was almost random, with nonsignificant co-ancestry values among trees as close as 50 m in core populations. In contrast, the distribution of alleles and genotypes within peripheral populations revealed an aggregation of similar multilocus genotypes, with co-ancestry values greater than 0.20 among trees up to 50 m apart and significant, positive values between trees up to 500 m. The relatively high density of reproductive adults in core populations may lead to highly overlapping seed shadows that limit development of spatial genetic structure. However, in peripheral populations with a lower density of adults, the distribution of alleles and genotypes was highly structured, likely due to offspring establishment near maternal trees and subsequent biparental inbreeding, as well as more recent population establishment at the leading edge of post-Pleistocene range expansion. Conserving genetic diversity in peripheral populations may require larger reserves for in situ conservation than required in core populations. These data on spatial genetic structure can be used to provide guidance for sampling strategies for both ex situ conservation and research collections.  相似文献   
139.
The dynamic aspect of proteins is fundamental to understanding protein stability and function. One of the goals of NMR studies of side-chain dynamics in proteins is to relate spin relaxation rates to discrete conformational states and the timescales of interconversion between those states. Reported here is a physical analysis of side-chain dynamics that occur on a timescale commensurate with monitoring by 2H spin relaxation within methyl groups. Motivated by observations made from tens-of-nanoseconds long MD simulations on the small protein eglin c in explicit solvent, we propose a simple molecular mechanics-based model for the motions of side-chain methyl groups. By using a Boltzmann distribution within rotamers, and by considering the transitions between different rotamer states, the model semi-quantitatively correlates the population of rotamer states with ‘model-free’ order parameters typically fitted from NMR relaxation experiments. Two easy-to-use, analytical expressions are given for converting S2axis’ values (order parameter for C–CH3 bond) into side-chain rotamer populations. These predict that S2axis’ values below 0.8 result from population of more than one rotameric state. The relations are shown to predict rotameric sampling with reasonable accuracy on the ps–ns timescale for eglin c and are validated for longer timescales on ubiquitin, for which side-chain residual dipolar coupling (RDC) data have been collected.  相似文献   
140.
New data were obtained on mitochondrial DNA (mtDNA) from Guahibo from Venezuela, a group so far not studied using molecular data. A population sample (n = 59) was analyzed for mtDNA variation in two control-region hypervariable segments (HV1 and HV2) by sequencing. The presence or absence of a 9-bp polymorphism in the COII/tRNA(Lys) region was studied by direct amplification and electrophoretic identification. Thirty-eight variable sites were detected in regions HV1 and HV2, defining 26 mtDNA lineages; 23.7% of these were present in a single individual. The 9-bp deletion was found in 3.39% of individuals. Nucleotide and haplotype diversities were relatively high compared with other New World populations. The identified sequence haplotypes were classified into four major haplogroups (A-D) according to previous studies, with high frequencies for A (47.46%) and C (49.15%), low frequency for B (3.39%), and an absence of D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号