全文获取类型
收费全文 | 294篇 |
免费 | 47篇 |
国内免费 | 15篇 |
专业分类
356篇 |
出版年
2024年 | 4篇 |
2023年 | 2篇 |
2022年 | 7篇 |
2021年 | 9篇 |
2020年 | 21篇 |
2019年 | 17篇 |
2018年 | 22篇 |
2017年 | 21篇 |
2016年 | 18篇 |
2015年 | 13篇 |
2014年 | 10篇 |
2013年 | 36篇 |
2012年 | 16篇 |
2011年 | 14篇 |
2010年 | 10篇 |
2009年 | 14篇 |
2008年 | 17篇 |
2007年 | 17篇 |
2006年 | 17篇 |
2005年 | 7篇 |
2004年 | 13篇 |
2003年 | 6篇 |
2002年 | 4篇 |
2001年 | 4篇 |
2000年 | 4篇 |
1999年 | 4篇 |
1998年 | 2篇 |
1997年 | 1篇 |
1996年 | 4篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1991年 | 1篇 |
1990年 | 4篇 |
1989年 | 1篇 |
1987年 | 1篇 |
1986年 | 3篇 |
1983年 | 1篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 2篇 |
排序方式: 共有356条查询结果,搜索用时 15 毫秒
81.
应用旋转培养的方法,建立冻干水痘减毒活疫苗的生产工艺。选择长成致密单层的2BS细胞,接种带状疱疹病毒Oka株,待细胞病变达75%以上时,收获病毒液,经超声破碎、离心、澄清,冻干后,按常规检定,疫苗各项检定符合《WHO水痘活疫苗规程》及《冻干水痘减毒活疫苗制造及检定试行规程》要求。与克氏瓶相比,应用旋转培养,不但提高了疫苗单产,降低了牛血清蛋白残留量,而且疫苗质量也保持稳定。 相似文献
82.
Aims: Listeria monocytogenes is a major safety concern for ready‐to‐eat foods. The overall objective of this study was to investigate whether prior frozen storage could enhance the efficacy of edible coatings against L. monocytogenes on cold‐smoked salmon during subsequent refrigerated storage. Methods and Results: A formulation consisting of sodium lactate (SL, 1·2–2·4%) and sodium diacetate (SD, 0·125–0·25%) or 2·5% Opti.Form (a commercial formulation of SL and SD) was incorporated into each of five edible coatings: alginate, κ‐carrageenan, pectin, gelatin and starch. The coatings were applied onto the surface of cold‐smoked salmon slices inoculated with L. monocytogenes at a level of 500 CFU cm?2. In the first phase, the slices were first frozen at ?18°C for 6 days and stored at 22°C for 6 days. Alginate, gelatin and starch appeared to be the most effective carriers. In the second phase, cold‐smoked salmon slices were inoculated with L. monocytogenes, coated with alginate, gelatin or starch with or without the antimicrobials and stored frozen at ?18°C for 12 months. Every 2 months, samples were removed from the freezer and kept at 4°C for 30 days. Prior frozen storage at ?18°C substantially enhanced the antilisterial efficacy of the edible coatings with or without antimicrobials during the subsequent refrigerated storage. Conclusions: Plain coatings with ≥2 months frozen storage and antimicrobial edible coatings represent an effective intervention to inhibit the growth of L. monocytogenes on cold‐smoked salmon. Significance and Impact of the Study: This study demonstrates the effectiveness of the conjunct application of frozen storage and edible coatings to control the growth of L. monocytogenes to enhance the microbiological safety of cold‐smoked salmon. 相似文献
83.
Superhydrophobic surfaces are often found in nature,such as plant leaves and insect wings.Inspired by superhydrophobic phenomenon of the rose petals and the lotus leaves,biomimetic hydrophobic surfaces with high or low adhesion were prepared with a facile drop-coating approach in this paper.Poly(vinyl alcohol) (PVA) was used as adhesive and SiO2 nanoparticles were used to fabricate surface micro-structure.Stearic acid or dodecafluoroheptyl-propyl-trimethoxysilane (DFTMS) were used as low surface energy materials to modify the prepared PVA/SiO2 coating surfaces.The effects of size of SiO2 nanoparticles,concentration of SiO2 nanoparticle suspensions and the modifications on the wettability of the surface were investigated.The morphology of the PVA/SiO2 coating surfaces was observed by using scanning electron microscope.Water contact angle of the obtained superhydrophilic surface could reach to 3°.Stearic acid modified PVA/SiO2 coating surfaces showed hydrophobicity with high adhesion.By mixing the SiO2 nanoparticles with sizes of 40 nm and 200 nm and modifying with DFTMS,water contact angle of the obtained coating surface could be up to 155° and slide angle was only 5°.This work provides a facile and useful method to control surface wettability through changing the roughness and chemical composition of a surface. 相似文献
84.
Jing Zhang Kai Zhang Junghoon Yang Gi‐Hyeok Lee Jeongyim Shin Vincent Wing‐hei Lau Yong‐Mook Kang 《Liver Transplantation》2018,8(20)
This study proposes a conformal surface coating of conducting polymer for protecting 1D nanostructured electrode material, thereby enabling a free‐standing electrode without binder for sodium ion batteries. Here, polypyrrole (PPy), which is one of the representative conducting polymers, encapsulated cobalt phosphide (CoP) nanowires (NWs) grown on carbon paper (CP), finally realizes 1D core–shell CoP@PPy NWs/CP. The CoP core is connected to the PPy shell via strong chemical bonding, which can maintain a Co–PPy framework during charge/discharge. It also possesses bifunctional features that enhances the charge transfer and buffers the volume expansion. Consequently, 1D core–shell CoP@PPy NWs/CP demonstrates superb electrochemical performance, delivering a high areal capacity of 0.521 mA h cm?2 at 0.15 mA cm?2 after 100 cycles, and 0.443 mA h cm?2 at 1.5 mA cm?2 even after 1000 cycles. Even at a high current density of 3 mA cm?2, a significant areal discharge capacity reaching 0.285 mA h cm?2 is still maintained. The outstanding performance of the CoP@PPy NWs/CP free‐standing anode provides not only a novel insight into the modulated volume expansion of anode materials but also one of the most effective strategies for binder‐free and free‐standing electrodes with decent mechanical endurance for future secondary batteries. 相似文献
85.
Yoo Seong Choi Dong Gyun Kang Seonghye Lim Yun Jung Yang Chang Sup Kim 《Biofouling》2013,29(7):729-737
Mussel adhesive proteins (MAPs) attach to all types of inorganic and organic surfaces, even in wet environments. MAP of type 5 (fp-5), in particular, has been considered as a key adhesive material. However, the low availability of fp-5 has hampered its biochemical characterization and practical applications. Here, soluble recombinant fp-5 is mass-produced in Escherichia coli. Tyrosinase-modified recombinant fp-5 showed ~1.11 MPa adhesive shear strength, which is the first report of a bulk-scale adhesive force measurement for purified recombinant of natural MAP type. Surface coatings were also performed through simple dip-coating of various objects. In addition, complex coacervate using recombinant fp-5 and hyaluronic acid was prepared as an efficient adhesive formulation, which greatly improved the bulk adhesive strength. Collectively, it is expected that this work will enhance basic understanding of mussel adhesion and that recombinant fp-5 can be successfully used as a realistic bulk-scale bioadhesive and an efficient surface coating material. 相似文献
86.
C. Cantacessi B.E. Campbell A. Visser P. Geldhof M.J. Nolan A.J. Nisbet J.B. Matthews A. Loukas A. Hofmann D. Otranto P.W. Sternberg R.B. Gasser 《Biotechnology advances》2009
A wide range of proteins belonging to the SCP/TAPS “family” has been described for various eukaryotic organisms, including plants and animals (vertebrates and invertebrates, such as helminths). Although SCP/TAPS proteins have been proposed to play key roles in a number of fundamental biological processes, such as host–pathogen interactions and defence mechanisms, there is a paucity of information on their genetic relationships, structures and functions, and there is no standardised nomenclature for these proteins. A detailed analysis of the relationships of members of the SCP/TAPS family of proteins, based on key protein signatures, could provide a foundation for investigating these areas. In this article, we review the current state of knowledge of key SCP/TAPS proteins of eukaryotes, with an emphasis on those from parasitic helminths, and undertake a comprehensive, systematic phylogenetic analysis of currently available full-length protein sequence data (considering characteristic protein signatures or motifs) to infer relationships and provide a framework (based on statistical support) for the naming of these proteins. This framework is intended to guide genomic and molecular biological explorations of key SCP/TAPS molecules associated with infectious diseases of plants and animals. In particular, fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new and innovative approaches for the control of parasitic diseases, with important biotechnological outcomes. 相似文献
87.
Daniela Ionita Maria Vardaki Miruna S.Stan Anca Dinischiotu Ioana Demetrescu 《仿生工程学报(英文版)》2017,14(3)
The aim of the present paper is to characterize bioinspired chitosan (CS) + hydroxyapatite (HA) coatings with various components ratio on a zirconium alloy with titanium.The coatings were characterized by FT-IR,SEM,hydrophilic/hydrophobic balance,adherence,roughness,electrochemical stability and in vitro cell response.Electrochemical tests,including potentiodynamic polarization curves and electrochemical impedance spectroscopy,were performed in normal saline physiological solution.Cell viability of MC3T3-E1 osteoblasts,lactate dehydrogenase,nitric oxide,and Reactive Oxygen Species (ROS) levels,as well as actin cytoskeleton morphology,were evaluated as biological in vitro tests.The results on in vitro cell response indicated good cell membrane integrity and viability for all samples,but an increased cell number,a decreased ROS level and a better cytoskeleton organization were noticed for the sample with a higher CS content.The coating with highest CS concentration indicated the best performance based on the experimental data.The highest hydrophilic character,highest resistance to corrosion and best biocompatibility as well recommend this coating for bioapplications in tissue engineering. 相似文献
88.
Feldmann A Claussnitzer U Otto M 《Journal of chromatography. B, Analytical technologies in the biomedical and life sciences》2004,803(1):149-157
This work describes further improvements of coating fused silica capillaries with 2-hydroxyethyl methacrylate (HEMA) by atom transfer radical polymerization (ATRP). First, endcapping with a sterically less bulky silanyl reagent reduces the electrosmotic flow (EOF) by 25% in addition to the 40% EOF reduction caused by HEMA coating compared to a bare fused silica capillary. An additional hydrolysis step was introduced into the preparation of HEMA coated capillaries and leads to better reproducible migration times. The influence of the solvent during ATRP and the resulting polymer coating was investigated by replacement of DMF with water or water-methanol mixtures. The quality of the optimized coating was characterized by protein separations at pH 3. HEMA coated capillaries reveal up to 746000 plates. The polyvinyl alcohol (PVA) coated capillary provides only half of this efficiency. A long-term test at pH 9 shows good stability of the HEMA coated capillaries in basic medium. Also the numbers of plates in this medium was about 30% higher than for separations with the PVA capillary. In addition, the phosphate buffer was replaced by a volatile ammonium acetate buffer for later use with mass spectrometry (MS). 相似文献
89.
90.
Wenqiang Wang Dongya Wang Guiyou Wang Mengyao Zheng Gengchao Wang 《Liver Transplantation》2020,10(25)
The shuttle of polysulfide and severe volume change of sulfur cathodes, are the bottlenecks in the practical application of lithium–sulfur batteries, and need to be solved through further exploration of simple and scalable strategies. Herein, an elastic and conductive coating layer is designed and synthesized, by combining water soluble conducting polymer modified carbon nanotubes (PASANTs) with crosslinked waterborne polyurethane (cWPU). It shows high electronic conductivity and excellent resilience. As a result, a lithium–sulfur battery with cWPU/PASANTs coated cathode is able to achieve an outstanding cycle stability with a capacity of 70.8% after 500 cycles at 0.5C and an excellent rate performance (specific capacity of 1130 mAh g?1 at 0.1C and maintain 68.2% at 2C). This work embodies a systematic design concept, which shows the application prospects of large‐scale production, and is expected to be further applied to other easily pulverized high‐specific‐capacity materials such as silicon and tin. 相似文献