首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   106篇
  国内免费   15篇
  2024年   1篇
  2023年   17篇
  2022年   6篇
  2021年   20篇
  2020年   41篇
  2019年   28篇
  2018年   29篇
  2017年   37篇
  2016年   28篇
  2015年   32篇
  2014年   26篇
  2013年   32篇
  2012年   19篇
  2011年   25篇
  2010年   20篇
  2009年   29篇
  2008年   46篇
  2007年   32篇
  2006年   24篇
  2005年   22篇
  2004年   23篇
  2003年   24篇
  2002年   21篇
  2001年   22篇
  2000年   17篇
  1999年   17篇
  1998年   12篇
  1997年   9篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有690条查询结果,搜索用时 15 毫秒
191.
To predict the long‐term effects of climate change – global warming and changes in precipitation – on the diameter (radial) growth of jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana [Mill.] B.S.P.) trees in boreal Ontario, we modified an existing diameter growth model to include climate variables. Diameter chronologies of 927 jack pine and 1173 black spruce trees, growing in the area from 47°N to 50°N and 80°W to 92°W, were used to develop diameter growth models in a nonlinear mixed‐effects approach. Our results showed that the variables long‐term average of mean growing season temperature, precipitation during wettest quarter, and total precipitation during growing season were significant (alpha = 0.05) in explaining variation in diameter growth of the sample trees. Model results indicated that higher temperatures during the growing season would increase the diameter growth of jack pine trees, but decrease that of black spruce trees. More precipitation during the wettest quarter would favor the diameter growth of both species. On the other hand, a wetter growing season, which may decrease radiation inputs, increase nutrient leaching, and reduce the decomposition rate, would reduce the diameter growth of both species. Moreover, our results indicated that future (2041–2070) diameter growth rate may differ from current (1971–2000) growth rates for both species, with conditions being more favorable for jack pine than black spruce trees. Expected future changes in the growth rate of boreal trees need to be considered in forest management decisions. We recommend that knowledge of climate–growth relationships, as represented by models, be combined with learning from adaptive management to reduce the risks and uncertainties associated with forest management decisions.  相似文献   
192.
Changes in primary productivity have the potential to substantially alter food webs, with positive outcomes for some species and negative outcomes for others. Understanding the environmental context and species traits that give rise to these divergent outcomes is a major challenge to the generality of both theoretical and applied ecology. In aquatic systems, nutrient-mediated eutrophication has led to major declines in species diversity, motivating us to seek terrestrial analogues using a large-mammal system across 598 000 km2 of the Canadian boreal forest. These forests are undergoing some of the most rapid rates of land-use change on Earth and are home to declining caribou (Rangifer tarandus caribou) populations. Using satellite-derived estimates of primary productivity, coupled with estimates of moose (Alces alces) and wolf (Canis lupus) abundance, we used path analyses to discriminate among hypotheses explaining how habitat alteration can affect caribou population growth. Hypotheses included food limitation, resource dominance by moose over caribou, and apparent competition with predators shared between moose and caribou. Results support apparent competition and yield estimates of wolf densities (1.8 individuals 1000 km−2) above which caribou populations decline. Our multi-trophic analysis provides insight into the cascading effects of habitat alteration from forest cutting that destabilize terrestrial predator–prey dynamics. Finally, the path analysis highlights why conservation actions directed at the proximate cause of caribou decline have been more successful in the near term than those directed further along the trophic chain.  相似文献   
193.
本研究通过FireBGCv2模型,模拟不同烈度林火干扰下未来100年呼中自然保护区森林各碳库的动态变化特征,以探究森林不同碳库对火干扰的响应规律,为保护区森林可燃物的管理提供科学依据。结果表明: 林火干扰显著降低了保护区森林碳储量,且林火烈度越大,碳储量降低越多。火干扰影响森林各碳库储量的变化,也改变了森林总碳库的分配特征。林火干扰对各碳库碳储量的影响表现为:林火干扰使活立木、半腐殖质层碳储量降低,使粗木质残体碳储量在模拟前、中期增加,在模拟后期降低,灌草碳库碳储量在模拟后期增加。林火烈度越大,活立木、灌草碳库碳储量越低,枯立木和粗木质残体碳库碳储量越高。林火干扰对总碳库分配的影响表现为:林火干扰后,灌草、枯立木、粗木质残体和土壤碳库占比增加,活立木、半腐殖层碳库在总碳库中的占比减小。林火烈度越大,灌草碳库占比越小,粗木质残体碳库占比越大,烈度对其他碳库占比影响较小。枯落物的周期性变化规律为: 20年达到高值,然后10年内降到低值,这一发现为确定森林可燃物处理的时间间隔提供了有力的依据,建议在大兴安岭地区每隔20年进行一次计划火烧,以合理保护该地区的森林资源。  相似文献   
194.
Boreal forests, containing >20% of the total organic carbon (OC) present at the surface of the Earth, are expected to be highly vulnerable to global warming. The objective of this study was to compare soil OC stocks and chemistry in jack pine stands located along a latitudinal climatic transect in central Canada. Total OC stocks (0–1 m) increased with decreasing mean annual temperature (MAT). We used a combination of physical fractionation of soil OC pools, 13C isotopic determination and cross‐polarization, magic‐angle spinning 13C nuclear magnetic resonance (NMR) spectroscopy to further characterize OC composition at all sites. Soil OC was dominated by labile pools. As illustrated by the C/N ratios, δ13C data and results from the 13C NMR analysis, the light fraction showed little alteration within the soil profiles. Instead, this fraction reflected the importance of fresh litter inputs and showed an increase in root contribution with depth. As opposed to the light fraction, the clay‐ and silt‐stabilized OC exhibited an increase in δ13C and a decrease in C/N with depth, indicating an increase in its degree of decomposition. These changes with depth were more marked at the southern than the northern sites. Results hence suggest that if the MAT were to increase in the northern boreal forest the overall jack pine soil OC stocks would decrease but the remaining OC would become more decomposed, and likely more stabilized than what is currently present within the soils.  相似文献   
195.
Drought‐induced, regional‐scale dieback of forests has emerged as a global concern that is expected to escalate under model projections of climate change. Since 2000, drought of unusual severity, extent, and duration has affected large areas of western North America, leading to regional‐scale dieback of forests in the southwestern US. We report on drought impacts on forests in a region farther north, encompassing the transition between boreal forest and prairie in western Canada. A central question is the significance of drought as an agent of large‐scale tree mortality and its potential future impact on carbon cycling in this cold region. We used a combination of plot‐based, meteorological, and remote sensing measures to map and quantify aboveground, dead biomass of trembling aspen (Populus tremuloides Michx.) across an 11.5 Mha survey area where drought was exceptionally severe during 2001–2002. Within this area, a satellite‐based land cover map showed that aspen‐dominated broadleaf forests occupied 2.3 Mha. Aerial surveys revealed extensive patches of severe mortality (>55%) resembling the impacts of fire. Dead aboveground biomass was estimated at 45 Mt, representing 20% of the total aboveground biomass, based on a spatial interpolation of plot‐based measurements. Spatial variation in percentage dead biomass showed a moderately strong correlation with drought severity. In the prairie‐like, southern half of the study area where the drought was most severe, 35% of aspen biomass was dead, compared with an estimated 7% dead biomass in the absence of drought. Drought led to an estimated 29 Mt increase in dead biomass across the survey area, corresponding to 14 Mt of potential future carbon emissions following decomposition. Many recent, comparable episodes of drought‐induced forest dieback have been reported from around the world, which points to an emerging need for multiscale monitoring approaches to quantify drought effects on woody biomass and carbon cycling across large areas.  相似文献   
196.
Canada's forests play an important role in the global carbon (C) cycle because of their large and dynamic C stocks. Detailed monitoring of C exchange between forests and the atmosphere and improved understanding of the processes that affect the net ecosystem exchange of C are needed to improve our understanding of the terrestrial C budget. We estimated the C budget of Canada's 2.3 × 106 km2 managed forests from 1990 to 2008 using an empirical modelling approach driven by detailed forestry datasets. We estimated that average net primary production (NPP) during this period was 809 ± 5 Tg C yr?1 (352 g C m?2 yr?1) and net ecosystem production (NEP) was 71 ± 9 Tg C yr?1 (31 g C m?2 yr?1). Harvesting transferred 45 ± 4 Tg C yr?1 out of the ecosystem and 45 ± 4 Tg C yr?1 within the ecosystem (from living biomass to dead organic matter pools). Fires released 23 ± 16 Tg C yr?1 directly to the atmosphere, and fires, insects and other natural disturbances transferred 52 ± 41 Tg C yr?1 from biomass to dead organic matter pools, from where C will gradually be released through decomposition. Net biome production (NBP) was only 2 ± 20 Tg C yr?1 (1 g C m?2 yr?1); the low C sequestration ratio (NBP/NPP=0.3%) is attributed to the high average age of Canada's managed forests and the impact of natural disturbances. Although net losses of ecosystem C occurred during several years due to large fires and widespread bark beetle outbreak, Canada's managed forests were a sink for atmospheric CO2 in all years, with an uptake of 50 ± 18 Tg C yr?1 [net ecosystem exchange (NEE) of CO2=?22 g C m?2 yr?1].  相似文献   
197.
During the past ~50 years, the number and area of lakes have declined in several regions in boreal forests. However, there has been substantial finer‐scale heterogeneity; some lakes decreased in area, some showed no trend, and others increased. The objective of this study was to identify the primary mechanisms underlying heterogeneous trends in closed‐basin lake area. Eight lake characteristics (δ18O, electrical conductivity, surface : volume index, bank slope, floating mat width, peat depth, thaw depth at shoreline, and thaw depth at the forest boundary) were compared for 15 lake pairs in Alaskan boreal forest where one lake had decreased in area since ~1950, and the other had not. Mean differences in characteristics between paired lakes were used to identify the most likely of nine mechanistic scenarios that combined three potential mechanisms for decreasing lake area (talik drainage, surface water evaporation, and terrestrialization) with three potential mechanisms for nondecreasing lake area (subpermafrost groundwater recharge through an open talik, stable permafrost, and thermokarst). A priori expectations of the direction of mean differences between decreasing and nondecreasing paired lakes were generated for each scenario. Decreasing lakes had significantly greater electrical conductivity, greater surface : volume indices, shallower bank slopes, wider floating mats, greater peat depths, and shallower thaw depths at the forest boundary. These results indicated that the most likely scenario was terrestrialization as the mechanism for lake area reduction combined with thermokarst as the mechanism for nondecreasing lake area. Terrestrialization and thermokarst may have been enhanced by recent warming which has both accelerated permafrost thawing and lengthened the growing season, thereby increasing plant growth, floating mat encroachment, transpiration rates, and the accumulation of organic matter in lake basins. The transition to peatlands associated with terrestrialization may provide a transient increase in carbon storage enhancing the role of northern ecosystems as major stores of global carbon.  相似文献   
198.
Aim An important issue regarding biodiversity concerns its influence on ecosystem functioning. Experimental work has led to the proposal of mechanisms such as niche complementarity. However, few attempts have been made to confirm these in natural systems, especially in forests. Furthermore, one of the most interesting unresolved questions is whether the effects of complementarity on ecosystem functioning (EF) decrease in favour of competitive exclusions over an increasing productivity gradient. Using records from permanent forest plots, we asked the following questions. (1) Is tree productivity positively related to diversity? (2) Does the effect of diversity increase in less productive forests? (3) What metric of diversity (e.g. functional or phylogenetic diversity) better relates to tree productivity? Location Temperate, mixed and boreal forests of eastern Canada. Methods Over 12,000 permanent forest plots, from temperate to boreal forests, were used to test our hypotheses in two steps. (1) Stepwise regressions were used to identify the best explanatory variables for tree productivity. (2) The selected climatic and environmental variables, as well as density and biodiversity indices, were included in a structural equation model where links (paths) between covarying variables are made explicit, making structural equation modelling the best tool to explore such complicated causal networks. Results This is the first large‐scale demonstration of a strong, positive and significant effect of biodiversity on tree productivity with control for climatic and environmental conditions. Important differences were noted between the two forest biomes investigated. Main conclusions We show for the first time that complementarity may be less important in temperate forests growing in a more stable and productive environment where competitive exclusion is the most probable outcome of species interactions, whereas in the more stressful environment of boreal forests, beneficial interactions between species may be more important. The present work is also a framework for the analysis of large datasets in biodiversity–ecosystem functioning (B‐EF) research.  相似文献   
199.
L A Lait  T M Burg 《Heredity》2013,111(4):321-329
The population genetic structure of northern boreal species has been strongly influenced both by the Quaternary glaciations and the presence of contemporary barriers, such as mountain ranges and rivers. We used a combination of mitochondrial DNA (mtDNA), nuclear microsatellites and spatial distribution modelling to study the population genetic structure of the boreal chickadee (Poecile hudsonicus), a resident passerine, and to investigate whether historical or contemporary barriers have influenced this northern species. MtDNA data showed evidence of eastern and western groups, with secondary admixture occurring in central Canada. This suggests that the boreal chickadee probably persisted in multiple glacial refugia, one in Beringia and at least one in the east. Palaeo-distribution modelling identified suitable habitat in Beringia (Alaska), Atlantic Canada and the southern United States, and correspond to divergence dates of 60–96 kya. Pairwise FST values for both mtDNA and microsatellites were significant for all comparisons involving Newfoundland, though mtDNA data suggest a more recent separation. Furthermore, unlike mtDNA data, nuclear data support population connectivity among the continental populations, possibly due to male-biased dispersal. Although both are significant, the isolation-by-distance signal is much stronger for mtDNA (r2=0.51) than for microsatellites (r2=0.05), supporting the hypothesis of male-biased dispersal. The population structure of the boreal chickadee was influenced by isolation in multiple refugia and contemporary barriers. In addition to geographical distance, physical barriers such as the Strait of Belle Isle and northern mountains in Alaska are restricting gene flow, whereas the Rocky Mountains in the west are a porous barrier.  相似文献   
200.
Effects of habitat loss and fragmentation on the behavior of individual organisms may have direct consequences on population viability in altered forest ecosystems. The American marten (Martes americana) is a forest specialist considered as one of the most sensitive species to human-induced disturbances. As some studies have shown that martens cannot tolerate >30–40% clear-cuts within their home range, we investigated marten space use (home range size and overlap) and habitat selection in landscapes fragmented by 2 different patterns of timber harvesting in the black spruce boreal forest: dispersed-cut landscapes (10–80 ha cut-blocks) and clustered-cut landscapes (50–200 ha cut-blocks). We installed radio-collars on female martens and determined 20 winter home ranges (100% minimum convex polygons and 60–90% kernels) in dispersed-cut (n = 8) and clustered-cut (n = 12) landscapes. Home range size was not related to the proportion of clear-cuts (i.e., habitat loss), but rather to the proportion of mixedwood stands 70–120 years old. However, female body condition was correlated to habitat condition inside their home ranges (i.e., amount of residual forest and recent clear-cuts). At the home range scale, we determined that mixedwood forests were also among the most used forest stands and the least used were recent clear-cuts and forested bogs, using resource selection functions. At the landscape scale, home ranges included more mixedwood forests than random polygons and marten high activity zones were composed of more residual forest and less human-induced disturbances (clear-cuts, edges, and roads). These results suggest that mixedwood forests, which occupy approximately 10% of the study area, play a critical role for martens in this conifer-dominated boreal landscape. We recommend permanent retention or special management considerations for these isolated stands, as harvesting mixedwood often leads to forest composition conversion that would reduce the availability of this highly used habitat. © The Wildlife Society, 2013  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号