首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   106篇
  国内免费   15篇
  2024年   1篇
  2023年   17篇
  2022年   6篇
  2021年   20篇
  2020年   41篇
  2019年   28篇
  2018年   29篇
  2017年   37篇
  2016年   28篇
  2015年   32篇
  2014年   26篇
  2013年   32篇
  2012年   19篇
  2011年   25篇
  2010年   20篇
  2009年   29篇
  2008年   46篇
  2007年   32篇
  2006年   24篇
  2005年   22篇
  2004年   23篇
  2003年   24篇
  2002年   21篇
  2001年   22篇
  2000年   17篇
  1999年   17篇
  1998年   12篇
  1997年   9篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   3篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
排序方式: 共有690条查询结果,搜索用时 62 毫秒
151.
Impaired ecosystems are converted back to natural ecosystems or some other target stage by means of restoration and management. Due to their agricultural legacy, afforested fields might be valuable compensatory habitats for rare fungal species that require nutrient‐rich forest soils. Using a large‐scale field experiment in Finland, we studied community composition of macrofungi (agarics and boletes) on former fields, which had been afforested as monocultures 20 years ago using native spruce Picea abies, pine Pinus sylvestris, and birch Betula pendula. We studied the effect of soil quality, tree species, and site on community composition and structure. Many nutrient‐demanding as well as rare fungal species were recorded, particularly from pine and spruce plots. Pine plots supported more nutrient‐demanding fungi than birch plots. There was no relationship between soil pH, bulk density, P, N, or Ca, and species richness of nutrient‐demanding fungi. Fungal community composition was more similar within sites than among sites for all tree species. Among sites, spruce plots had the smallest fungal species turnover, and birch plots largest. Within sites, however, fungal species turnover from plot to plot was similar among tree species. Our results indicate that tree species has a relatively mild influence on species composition of fungi after 20 years of succession. Interestingly, the results show that afforested fields can be valuable complementary habitats for rare, red‐listed, and nutrient‐demanding fungal species. Field afforestation is a potential conservation tool that could be used to complement the poor representation of rare habitat types in highly fragmented protected area networks.  相似文献   
152.
Sources and sinks of dissolved organic carbon in a forested swamp catchment   总被引:14,自引:6,他引:8  
Concentrations of dissolved organic carbon (DOC) were measured in precipitation, throughfall, stemflow, and soil, peat and stream water in a 50 ha catchment with a central 5 ha swamp at Mont St. Hilaire, Quebec. DOC concentrations in precipitation were low (2.0 mg L–1), but increased in passage through the tree canopies as throughfall (9.1–14.6 mg L–1) and stemflow (23.1–30.1 mg L–1). For the period July 1–November 15, 1987, 0.5 g DOC m–2 was imported as precipitation, and forest canopies contributed a further 1.4–1.7 g m–2 2 to the soil surface. DOC concentrations were higher (46.0 and 67.6 mg L–1) in upland soil organic horizons, but decreased with depth because subsoil mineral horizons acted as a major sink of DOC. A laboratory experiment using leaf leachate revealed that subsoil horizons were able to adsorb DOC, with equilibrium DOC concentrations ranging from 3 to 19 mg L–1. Soil organic carbon appeared to be an important determinant of equilibrium DOC concentrations. The swamp was a major source of DOC, with an overall average DOC concentration of 58.6 mg L–1 and showed strong spatial and temporal variations related to hydrologic and thermal regimes. During base flow periods, stream DOC concentrations were small (< 3 mg L–1), dominated by water fed from springs draining upland soils. During high flows, stream DOC concentrations increased through the contribution of DOC-rich water originating in the swamp. Sources, sinks and transport of DOC are thus a function of a complex set of inter-related biotic and abiotic process.  相似文献   
153.
Peter Ax 《Hydrobiologia》1991,227(1):365-368
The composition of brackish-water faunas on both sides of North America shows a high degree of similarity with the corresponding faunas in European brackish waters in terms of species of the Plathelminthes. Twenty species are common to both the Atlantic coast of Canada and Northern Europe; a further nine brackish-water plathelminths are common to the Pacific coast of Alaska and Europe; and two species occur in all three areas. These patterns of distribution must be regarded as the result of past or present connections between the American and European populations of brackish-water species. The most parsimonious explanation is the hypothesis that a species-rich community of brackish-water plathelminths has a northern circumpolar distribution.  相似文献   
154.
Boreal peatland ecosystems occupy about 3.5 million km2 of the earth's land surface and store between 250 and 455 Pg of carbon (C) as peat. While northern hemisphere boreal peatlands have functioned as net sinks for atmospheric C since the most recent deglaciation, natural and anthropogenic disturbances, and most importantly wildfire, may compromise peatland C sinks. To examine the effects of fire on local and regional C sink strength, we focused on a 12 000 km2 region near Wabasca, AB, Canada, where ombrotrophic Sphagnum‐dominated bogs cover 2280 km2 that burn with a fire return interval of 123±26 years. We characterized annual C accumulation along a chronosequence of 10 bog sites, spanning 1–102 years‐since‐fire (in 2002). Immediately after fire, bogs represent a net C source of 8.9±8.4 mol m−2 yr−1. At about 13 years after fire, bogs switch from net C sources to net C sinks, mainly because of recovery of the moss and shrub layers. Subsequently, black spruce biomass accumulation contributes to the net C sink, with fine root biomass accumulation peaking at 34 years after fire and aboveground biomass and coarse root accumulation peaking at 74 years after fire. The overall C sink strength peaks at 18.4 mol C m−2 yr−1 at 75 years after fire. As the tree biomass accumulation rate declines, the net C sink decreases to about 10 mol C m−2 yr−1 at 100 years‐since‐fire. We estimate that across the Wabasca study region, bogs currently represent a C sink of 14.7±5.1 Gmol yr−1. A decrease in the fire return interval to 61 years with no change in air temperature would convert the region's bogs to a net C source. An increase in nonwinter air temperature of 2 °C would decrease the regional C sink to 6.8±2.3 Gmol yr−1. Under scenarios of predicted climate change, the current C sink status of Alberta bogs is likely to diminish to the point where these peatlands become net sources of atmospheric CO2‐C.  相似文献   
155.
With a unique data set comprising 1041 boreal forested and low human impacted lakes included in three Swedish lake inventories for 1995, 2000 and 2005 and with time series for 12 of the lakes from 1988 to 2008 we show that nitrate‐nitrogen (NO3‐N) is accumulated in freshwaters along with increasing atmospheric nitrogen deposition (Ndep). At the same time we observe decreasing DOC : NO3‐N ratios in the water column. We suggest that NO3‐N is accumulated in freshwaters when denitrifying bacteria are limited by their energy source rather than the availability of NO3‐N, i.e. at low DOC : NO3‐N ratios. We obtained further support for a close relationship between Ndep driven DOC : NO3‐N ratios and the efficiency of nitrate removal by using a published global data set on measured nitrate removal rates in unproductive reference streams. Owing to the currently decreasing Ndep in large regions of, for instance, Northern Europe, this process is now reversed, resulting in increasing DOC : NO3‐N ratios and more efficient nitrate removal from freshwaters. Depending on NOx emissions, nitrogen limited regions may expand with an immediate effect on nitrate concentrations in freshwaters.  相似文献   
156.
Increased interest in biomass harvesting for bioenergetic applications has raised questions regarding the potential ecological consequences on forest biodiversity. Here we evaluate the initial changes in the abundance, species richness and community composition of rove (Staphylinidae) and ground beetles (Carabidae), immediately following 1) stem-only harvesting (SOH), in which logging debris (i.e., tree tops and branches) are retained on site, and 2) whole-tree harvesting (WTH), in which stems, tops and branches are removed in mature balsam fir stands in Quebec, Canada. Beetles were collected throughout the summer of 2011, one year following harvesting, using pitfall traps. Overall catch rates were greater in uncut forest (Control) than either stem-only or whole-tree harvested sites. Catch rates in WTH were greater than SOH sites. Uncut stands were characterized primarily by five species: Atheta capsularis, Atheta klagesi, Atheta strigosula, Tachinus fumipennis/frigidus complex (Staphylinidae) and to a lesser extent to Pterostichus punctatissimus (Carabidae). Increased catch rates in WTH sites, where post-harvest biomass was less, were attributable to increased catches of rove beetles Pseudopsis subulata, Quedius labradorensis and to a lesser extent Gabrius brevipennis. We were able to characterize differences in beetle assemblages between harvested and non-harvested plots as well as differences between whole tree (WTH) and stem only (SOH) harvested sites where logging residues had been removed or left following harvest. However, the overall assemblage response was largely a recapitulation of the responses of several abundant species.  相似文献   
157.
158.
159.
Biocontrol of caterpillars by ants is highly variable, and we investigate how the strength of the trophic relationship between ants and an important outbreaking forest pest depends on phenological synchrony and on social foraging. We test the hypothesis that early spring foraging by ants, coupled with eusocial recruitment behavior, could undermine the caterpillar's strategies to achieve either enemy-free space or predator satiation.We use a series of field surveys and experiments in trembling aspen stands (Populus tremuloides) in the boreal forest of eastern Canada to assess the role of ants in early-instar mortality of the outbreaking, gregarious forest tent caterpillar (Malacosoma disstria). We also investigate individual-level mechanisms related to phenology and social behavior that underlie the effectiveness of ants as biocontrol on caterpillars. Our results show that ants climb trees early in the spring and harvest young forest tent caterpillars, suggesting that early phenology does not provide an entirely enemy-free space for caterpillars. Our findings further show that recruitment-based social foraging enables ants to deplete groups of gregarious prey, suggesting that these eusocial insects are particularly effective at generating predation pressure on gregarious herbivores since they do not satiate easily. Finally, a manipulative predator exclusion experiment confirms that ant predation is a significant mortality source for early-instar forest tent caterpillars. Taken together, these results suggest that phenology and sociality could modulate the role of ants as effective caterpillar predators and thus showcase the importance of considering natural history and behavioral traits when studying trophic interactions and their role in population dynamics.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号