全文获取类型
收费全文 | 1764篇 |
免费 | 302篇 |
国内免费 | 156篇 |
专业分类
2222篇 |
出版年
2024年 | 10篇 |
2023年 | 59篇 |
2022年 | 26篇 |
2021年 | 65篇 |
2020年 | 90篇 |
2019年 | 106篇 |
2018年 | 97篇 |
2017年 | 99篇 |
2016年 | 84篇 |
2015年 | 103篇 |
2014年 | 83篇 |
2013年 | 99篇 |
2012年 | 71篇 |
2011年 | 58篇 |
2010年 | 59篇 |
2009年 | 114篇 |
2008年 | 117篇 |
2007年 | 99篇 |
2006年 | 90篇 |
2005年 | 79篇 |
2004年 | 76篇 |
2003年 | 62篇 |
2002年 | 51篇 |
2001年 | 57篇 |
2000年 | 61篇 |
1999年 | 51篇 |
1998年 | 47篇 |
1997年 | 40篇 |
1996年 | 18篇 |
1995年 | 22篇 |
1994年 | 20篇 |
1993年 | 18篇 |
1992年 | 14篇 |
1991年 | 16篇 |
1990年 | 16篇 |
1989年 | 9篇 |
1988年 | 12篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 5篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 4篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1976年 | 1篇 |
1974年 | 1篇 |
1958年 | 1篇 |
排序方式: 共有2222条查询结果,搜索用时 11 毫秒
21.
By harvesting scattered large trees, selective logging increases light availability and thereby stimulates growth and crown expansion at early‐life stage among remnant trees. We assessed the effects of logging on total and merchantable bole (i.e., lowest branch at crown base) heights on 952 tropical canopy trees in French Guiana. We observed reductions in both total (mean, ?2.3 m) and bole (mean, ?2.0 m) heights more than a decade after selective logging. Depending on local logging intensity, height reductions resulted in 2–13 percent decreases in aboveground tree biomass and 3–17 percent decreases in bole volume. These results highlight the adverse effects of logging at both tree and stand levels. This decrease in height is a further threat to future provision of key environmental services, such as timber production and carbon sequestration. 相似文献
22.
Ananda B. Assis Catherine R. Bevier Cristine Chaves Barreto Carlos Arturo Navas 《Ecology and evolution》2020,10(2):901-913
The composition of the skin microbiota of amphibians is related to the biology of host species and environmental microbial communities. In this system, the environment serves as a microbial source and can modulate the hosted community. When habitats are fragmented and the environment disturbed, changes in the structure of this microbial community are expected. One important potential consequence of fragmentation is a compromised protective function of the microbiota against pathogenic microorganisms. In this study, the skin microbiota of the amphibian Proceratophrys boiei was characterized, evaluated for relationships with environmental variables and environmental sources of microbial communities, and its diversity evaluated for frog populations from fragmented and continuous forests. In addition, the antimicrobial activity of this skin community was studied in frogs from both forest types. Culture methods and 16S rRNA high‐throughput gene sequencing were used to characterize the microbial community and demonstrated that the skin microbiota of P. boiei is more closely related to the soil microbial communities than those inhabiting water bodies or fragment matrix, the unforested area around the forested fragment. The microbial diversity and abundance of P. boiei skin microbiota are different between continuous forests and fragments. This community is correlated with environmental variables, especially with temperature of microhabitat and distance to human dwelling. All individuals of P. boiei harbored bacteria capable of inhibiting the growth of pathogenic bacteria and different strains of the pathogenic fungus Batrachochytrium dendrobatidis, and a total of 27 bacterial genera were detected. The results of this study indicate that the persistence of populations of this species will need balanced and sustained interactions among host, microorganisms, and environment. 相似文献
23.
Toby A. Gardner Jos Barlow Robin Chazdon Robert M. Ewers Celia A. Harvey Carlos A. Peres Navjot S. Sodhi 《Ecology letters》2009,12(6):561-582
The future of tropical forest biodiversity depends more than ever on the effective management of human-modified landscapes, presenting a daunting challenge to conservation practitioners and land use managers. We provide a critical synthesis of the scientific insights that guide our understanding of patterns and processes underpinning forest biodiversity in the human-modified tropics, and present a conceptual framework that integrates a broad range of social and ecological factors that define and contextualize the possible future of tropical forest species. A growing body of research demonstrates that spatial and temporal patterns of biodiversity are the dynamic product of interacting historical and contemporary human and ecological processes. These processes vary radically in their relative importance within and among regions, and have effects that may take years to become fully manifest. Interpreting biodiversity research findings is frequently made difficult by constrained study designs, low congruence in species responses to disturbance, shifting baselines and an over-dependence on comparative inferences from a small number of well studied localities. Spatial and temporal heterogeneity in the potential prospects for biodiversity conservation can be explained by regional differences in biotic vulnerability and anthropogenic legacies, an ever-tighter coupling of human-ecological systems and the influence of global environmental change. These differences provide both challenges and opportunities for biodiversity conservation. Building upon our synthesis we outline a simple adaptive-landscape planning framework that can help guide a new research agenda to enhance biodiversity conservation prospects in the human-modified tropics. 相似文献
24.
东北森林净第一性生产力与碳收支对气候变化的响应 总被引:9,自引:0,他引:9
以东北地区(38.43'N~53.34'N,115.37'E~135.5'E)为研究对象,利用当前气候状况和不同气候情景下的气象数据驱动基于个体生长过程的中国森林生态系统碳收支模型FORCCHN,模拟了气候变化对东北森林生态系统净第一性生产力(NPP)和碳收支(NEP)的影响.结果表明:1981~2002年期间,东北森林NPP总量位于0.27~0.40 pgc·a-1之间,平均值为0.34 pgc·a-1;土壤呼吸总量在0.11~0.27 PgC·a-1,平均为0.19 PgC·a-1;NEP总量位于0.11~0.18 PgC·a-1之间,且近20多年来该区森林起着CO2汇的作用,平均每年吸收0.15 Pg C的CO2;该区森林NPP和NEP对温度升高比对降雨变化的反应更为敏感;综合降雨增加(20%)和气温增加(3℃)的情况,该区各点森林的NPP和NEP增加的幅度最大;温度不变、降水增加(不变)情景下最小. 相似文献
25.
26.
应用模糊聚类分析法和模糊图论分析对太白山针叶林进行了数量分类比较研究。将26个样地分为两大类共7个群落类型。研究结果表明,两种方法在植物群落分类研究中,不但是可行的,而且所分类的实际结果是等价的,与实际观测情况也是吻合的。其中的图论法直接依据模糊相似系数得到树状图,简便易行,显示出更大的适用性。 相似文献
27.
28.
Aim Carbon (C) and nitrogen (N) stoichiometry is a critical indicator of biogeochemical coupling in terrestrial ecosystems. However, our current understanding of C : N stoichiometry is mainly derived from observations across space, and little is known about its dynamics through time. Location Global secondary forests. Methods We examined temporal variations in C : N ratios and scaling relationships between N and C for various ecosystem components (i.e. plant tissue, litter, forest floor and mineral soil) using data extracted from 39 chronosequences in forest ecosystems around the world. Results The C : N ratio in plant tissue, litter, forest floor and mineral soil exhibited large variation across various sequences, with an average of 145.8 ± 9.4 (mean ± SE), 49.9 ± 3.0, 38.2 ± 3.1 and 18.5 ± 0.9, respectively. In most sequences, the plant tissue C : N ratio increased significantly with stand age, while the C : N ratio in litter, forest floor and mineral soil remained relatively constant over the age sequence. N and C scaled isometrically (i.e. the slope of the relationship between log‐transformed N and C is not significantly different from 1.0) in litter, forest floor and mineral soil both within and across sequences, but not in plant tissue either within or across sequences. The C : N ratio was larger in coniferous forests than in broadleaf forests and in temperate forests than in tropical forests. In contrast, the N–C scaling slope did not reveal significant differences either between coniferous and broadleaf forests or between temperate and tropical forests. Main conclusions These results suggest that C and N become decoupled in plants but remain coupled in other ecosystem components during stand development. 相似文献
29.
福建建溪流域常绿阔叶防护林物种多样性特征研究 总被引:61,自引:0,他引:61
从生物多样性保护原则出发,物种多样性应是评价防护林综合效益的重要指标之一。本文采用Weibull分布模型分析建溪流域防护林乔木层、灌木层的种-多度关系,用多种公式计算防护林各层次的物种多样性并与我国暖温带落叶阔叶林的物种多样性相比较,得出以下结论:1)该流域防护林乔木层的种-多度关系符合Weibull分布模型,说明个体数量较多的乔木仅限于少数几种主要的树种,群落的均匀度相对较小;2)该流域防护林主要群落内乔木层、灌木层和草本层的丰富度、均匀度和总多样性指数都较我国暖温带落叶阔叶林相对应的指数高。 相似文献
30.
Fog in the California redwood forest: ecosystem inputs and use by plants 总被引:25,自引:0,他引:25
T. E. Dawson 《Oecologia》1998,117(4):476-485
Fog has been viewed as an important source of moisture in many coastal ecosystems, yet its importance for the plants which inhabit these ecosystems is virtually unknown. Here, I report the results of a 3-year investigation of fog inputs and the use of fog water by plants inhabiting the heavily fog inundated coastal redwood (Sequoia sempervirens) forests of northern California. During the study period, 34%, on average, of the annual hydrologic input was from fog drip off the redwood trees themselves (interception input). When trees were absent, the average annual input from fog was only 17%, demonstrating that the trees significantly influence the magnitude of fog water input to the ecosystem. Stable hydrogen and oxygen isotope analyses of water from fog, rain, soil water, and xylem water extracted from the dominant plant species were used to characterize the water sources used by the plants. An isotopic mixing model was employed to then quantify how much fog water each plant used each month during the 3-year study. In summer, when fog was most frequent, ~19% of the water within S.sempervirens, and ~66% of the water within the understory plants came from fog after it had dripped from tree foliage into the soil; for S.sempervirens, this fog water input comprised 13–45% of its annual transpiration. For all plants, there was a significant reliance on fog as a water source, especially in summer when rainfall was absent. Dependence on fog as a moisture source was highest in the year when rainfall was lowest but fog inputs normal. Interestingly, during the mild El Niño year of 1993, when the ratio of rainfall to fog water input was significantly higher and fog inputs were lower, both the proportion and coefficient of variation in how much fog water was used by plants increased. An explanation for this is that while fog inputs were lower than normal in this El Niño year, they came at a time when plant demand for water was highest (summer). Therefore, proportional use of fog water by plants increased. The results presented suggest that fog, as a meteorological factor, plays an important role in the water relations of the plants and in the hydrology of the forest. These results demonstrate the importance of understanding the impacts of climatic factors and their oscillations on the biota. The results have important implications for ecologists, hydrologists, and forest managers interested in fog-inundated ecosystems and the plants which inhabit them. 相似文献