首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10988篇
  免费   1849篇
  国内免费   3079篇
  2024年   93篇
  2023年   341篇
  2022年   301篇
  2021年   501篇
  2020年   620篇
  2019年   647篇
  2018年   591篇
  2017年   583篇
  2016年   601篇
  2015年   624篇
  2014年   578篇
  2013年   686篇
  2012年   538篇
  2011年   589篇
  2010年   478篇
  2009年   613篇
  2008年   689篇
  2007年   742篇
  2006年   704篇
  2005年   606篇
  2004年   573篇
  2003年   489篇
  2002年   468篇
  2001年   433篇
  2000年   418篇
  1999年   364篇
  1998年   332篇
  1997年   235篇
  1996年   206篇
  1995年   195篇
  1994年   163篇
  1993年   139篇
  1992年   144篇
  1991年   117篇
  1990年   101篇
  1989年   75篇
  1988年   57篇
  1987年   56篇
  1986年   47篇
  1985年   28篇
  1984年   27篇
  1983年   26篇
  1982年   33篇
  1981年   7篇
  1980年   14篇
  1979年   9篇
  1978年   12篇
  1977年   10篇
  1975年   3篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 27 毫秒
221.
We investigated which of the following environmental factors: the number of years since the windthrow of the tree (the age of dead wood), the phytocenosis (the type of forest community), altitude, exposure, wood hardness and the spatial scale of forest disturbances (small gaps with a few fallen spruces vs large-area windthrows) contributed to the diversity and abundance of lichens inhabiting the exposed wood of windthrown spruce trees in Polish Western Carpathian forests. Both Shannon H index and sum of coverage coefficients rose with increasing age of the wood, levelling off after 11–14 y (diversity) and 14–17 y (abundance). This factor appeared to be the most important for this group of lichens, but the significant positive impact of large-area windthrows on the lichen abundance was also demonstrated by using a GLM model. The age of the wood we precisely determined on the basis of data on Norway spruce mortality collected annually in permanent plots of the Gorce National Park since 2000. Using the Shore durometer we linked the course of the wood-inhabiting lichen succession with wood decay more precisely than before. The largest number of species was associated with medium hard wood, i.e., 51 < x ≤ 80 on the Shore scale. Based on the NMDS analysis, we distinguished four age groups of logs, differing in lichen abundance and defined by the dominance of distinctive species. A large number of usually corticolous lichen species used the wood of windthrown spruce logs as an optional habitat to survive large-scale, post-hurricane forest disturbances.  相似文献   
222.
The climate of the native tropical forest habitats of Hylocereus undatus, a hemiepiphytic cactus cultivated in 20 countries for its fruit, can help explain the response of its net CO2 uptake to environmental factors. Under wet conditions, about 85% of the total daily net CO2 uptake occurs at night via Crassulacean acid metabolism, leading to a high water‐use efficiency. Total daily net CO2 uptake is reduced 57% by only 10 days of drought, possibly involving stomatal closure induced by abscisic acid produced in the roots, which typically occupy a small substrate volume. Total daily net CO2 uptake for H. undatus is maximal at day/night air temperatures of 30/20°C, optimal temperatures that are higher than those for desert cacti but representative of ambient temperatures in the tropics; its total daily net CO2 uptake becomes zero at day/night air temperatures of 42/32°C. Stem damage occurs at 45°C for H. undatus, whose photosynthetic cells show little acclimation to high temperatures compared with other cacti and are also sensitive to low temperatures, ‐1.5°C killing half of these cells. Consistent with its shaded habitat, total daily net CO2 uptake is appreciable at a total daily PPF of only 2 mol m2 day' and is maximal at 20 mol m?2 day?1, above which photoinhibition reduces net CO2 uptake. Net CO2 uptake ability, which is highly correlated with stem nitrogen and chlorophyll contents, changes only gradually (halftimes of 2–3 months) as the concentration of applied N is changed. Doubling the atmospheric CO2 concentration raises the total daily net CO2 uptake of H. undatus by 34% under optimal conditions and by even larger percentages under adverse environmental conditions.  相似文献   
223.
The aims of this study were to investigate the diet and relative abundance of fruit bats in a lowland Malaysian rain forest and to test the hypothesis that the local assemblage structure of fruit bats varies significantly over time in relation to the availability of food. In total, 352 fruit bats of eight species were captured during 72,306 m2 mist‐net hours of sampling between February 1996 and September 1999. Three species of fruit bats (Balionycteris maculita, Chironax melanocephalus, and Cynopterus brachyotis) that fed on a wide range of “steady state” and “big bang” food resources were captured continuously throughout the study period, with no significant variation in capture rates over time. In contrast, five species that fed exclusively or almost exclusively on “big bang” food resources were sampled intermittently, with significant temporal variation in the capture rates of two species (Cynopterus horsfieldi and Megaerops ecaudatus). Significant variation in the capture rates of the remaining three species (Dyacopterus spadiceus, Eonycteris spelaea, and Rousettus amplexicaudatus) could not be detected due to small sample sizes. Since ephemeral “big bang” food resources were only sporadically available within the study area and were associated with large canopy trees and strangler figs, these results suggest that food abundance, or the availability of specific food items, may be important factors limiting local fruit bat species diversity in old‐growth Paleotropical rain forest. Thus, only three fruit bat species were locally resident within the forest throughout the study period. Therefore, further studies on the ranging behavior and habitat requirements of Malaysian fruit bats are required to assess the adequacy of existing reserves and protected areas.  相似文献   
224.
The vine weevil Otiorhynchus sulcatus is a parthenogenetic reproducing species which forages for suitable host plants at night, but is found congregated in dark places during the day. Frass of this weevil species is suspected to contain attractive compounds that are host‐plant related. Using a still‐air olfactometer, we tested adult vine weevils at night for their behavioural response to odours from conspecifics, feeding on a mixture of spindle tree (Euonymus fortunei) and yew (Taxus baccata), and to a sexually reproducing related species (Otiorhynchus salicicola), feeding on a mixture of ivy (Hedera helix) and cherry laurel (Prunus laurocerasus). Their attraction to conspecifics and O. salicicola appeared to be related to frass production. Freshly collected frass from O. sulcatus and from O. salicicola males and females was attractive. Prunus laurocerasus and H. helix have not been observed to be hosts of the vine weevil in the field. However, our tests showed that the vine weevil was attracted to mechanically damaged leaves of both plant species, whereas undamaged leaves were not attractive. Only undamaged young unfolding leaves of H. helix were also attractive. The attraction to odours from mechanically damaged host and non‐host plants suggested the involvement of compounds that are commonly found in many plant species. The involvement of plant compounds and/or aggregation pheromones in attraction to frass of the vine weevil and frass of the related weevil species O. salicicola is discussed.  相似文献   
225.
226.
Abstract 1 In the Mediterranean region, the eriophyoid mite Trisetacus juniperinus causes considerable damage to the evergreen cypress, Cupressus sempervirens L., particularly in nurseries and young stands, disturbing the apical growth of the tree. 2 The impact of mites on survival and apical growth of two commercial clones of cypress (Agrimed and Bolgheri), as well as the results of differently timed pesticide applications to suppress mite population on newly grafted trees, were evaluated. 3 Mites easily infested clonal scions from rootstocks that were previously infested in the nursery, inducing tip deformation and disturbance of the growth. Apical growth was significantly lower in infested than in control trees 2 years following the graft. 4 Deformed apical buds were left early by mites, which dispersed in the crown and may have incurred high mortality. This is interpreted as a defensive reaction of the cypress to the mite attack, which involves costs resulting in reduced apical growth in both clones. However, mites partly overcame tree defences in the Bolgheri clone. 5 Healthy rootstock and graft material should be used to limit damage and maintain plant growth because natural infestations rarely occur. In case of attack, a pesticide should be applied as soon as possible because precocious mite infestation has a log‐lasting effect on tree growth, with considerable economic damage.  相似文献   
227.
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species.  相似文献   
228.
Aim To quantify the influences of forest area, shape and isolation on tree species diversity in Ghana and to compare their significance with the influences of climate (average annual rainfall) and disturbance (fire burn, logging, agriculture). Location The forest zone of southern Ghana, West Africa (between 5 and 8° N). Methods For twenty‐two forest fragments (1) bivariate regression analyses of tree species diversity (number and composition) were employed with forest spatial geometry, climate and disturbance variables. (2) Multivariate regression analyses of tree species number and all seven environmental variables were used to determine the variability in tree species number that could be accounted for by these environmental variables. Results Forest area, shape and isolation accounted for sharply decreasing proportions of variability in tree species diversity. Large forest fragments contained the greatest numbers of tree species and the highest proportions of rare tree species; irregular fragments had high proportions of regenerating, light‐demanding pioneers and mature, animal‐dispersed species and isolated fragments were floristically similar to less isolated fragments. Fire burn and average annual rainfall accounted for small, but nevertheless significant, proportions of variability in tree species diversity. Logging and agriculture were non‐significant variables. Main conclusions (1) Forest area is the most important consideration when planning tropical forest reserves. (2) Management of disturbance should take priority over management of forest shape if higher levels of tree diversity and species quality are to be maintained. (3) If new reserves are to be designated, they should be located within different climatic zones in order to capture a large fraction of the regional biota. (4) Biogeographers have an important role to play in formulating and testing hypotheses at a broad spatial scale and ultimately, informing conservation management within the tropical biome.  相似文献   
229.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.  相似文献   
230.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号