首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10968篇
  免费   1847篇
  国内免费   3075篇
  2024年   76篇
  2023年   340篇
  2022年   294篇
  2021年   501篇
  2020年   619篇
  2019年   647篇
  2018年   591篇
  2017年   583篇
  2016年   601篇
  2015年   624篇
  2014年   578篇
  2013年   686篇
  2012年   538篇
  2011年   589篇
  2010年   478篇
  2009年   613篇
  2008年   689篇
  2007年   742篇
  2006年   704篇
  2005年   606篇
  2004年   573篇
  2003年   489篇
  2002年   468篇
  2001年   433篇
  2000年   418篇
  1999年   364篇
  1998年   332篇
  1997年   235篇
  1996年   206篇
  1995年   195篇
  1994年   163篇
  1993年   139篇
  1992年   144篇
  1991年   117篇
  1990年   101篇
  1989年   75篇
  1988年   57篇
  1987年   56篇
  1986年   47篇
  1985年   28篇
  1984年   27篇
  1983年   26篇
  1982年   33篇
  1981年   7篇
  1980年   14篇
  1979年   9篇
  1978年   12篇
  1977年   10篇
  1975年   3篇
  1958年   3篇
排序方式: 共有10000条查询结果,搜索用时 665 毫秒
191.
鼎湖山自然林豆科固氮植物资源的调查研究   总被引:3,自引:1,他引:2  
本文在调查鼎湖山自然林木本豆科植物结瘤固氮的基础上,参阅了国内外有关豆科植物结瘤固氮的主要文献,研究了鼎湖山自然林木本豆科植物的固氮资源。结果得出鼎湖山自然林中常见的木本豆科植物共有41种,其中乔木15种,灌木6种,木质藤本20种;有结瘤固氮特性的26种,其中乔木11种,灌木5种,木质藤本10种;经初步调查未见根瘤的6种,其中乔木2种,灌木1种,木质藤本3种;未调查的9种,其中乔木2种,木质藤本7种。本研究结果为鼎湖山木本豆科固氮植物资源的保护、管理和开发利用提供了科学论据,在理论和应用方面均有重要意义。  相似文献   
192.
Radiocarbon (14C) has been used to date carbon-rich objects in Earth science, archeology, and history since the 1940s. New methods, using spikes in 14C caused by solar proton events, can be used to annually date wood when crossdating is not possible, such as when sample size is low, samples are floating in time, or external disturbances lead to insecure dates. Here, we use a spike in radiocarbon during a solar energetic particle (SEP) event in 774/775 CE to confirm crossdating of a poorly-replicated King Billy pine (Athrotaxis selaginoides) chronology. Low sample depth between 1498 and 1523 CE (two trees) prevented confident dating of the early period of the chronology. Three core samples with strong correlation with the master chronology that likely included the 774/775 CE Miyake SEP event were identified for radiocarbon isotope analysis. We sectioned segments centered on the estimated 774/775 CE date and then isolated the holocellulose in each sample. Samples were sent to an accelerator mass spectrometry (AMS) for radiocarbon measurements. The AMS data confirmed the crossdating accuracy of the tree ring series and reinforces the applicability of this technique to anchor poorly dated tree ring series in time. In addition, we found sample processing with a microtome proved superior for holocellulose extractions and yielded more accurate 14C measurements. We recommend sampling with a microtome, processing at least three samples per year, and including sample masses greater than 100 ug C to confirm dating using radiocarbon spikes.  相似文献   
193.
Microsites are created by abiotic and biotic features of the landscape and may provide essential habitats for the persistence of biota. Forest canopies and understorey plants may moderate wind and solar radiation to create microclimatic conditions that differ considerably from regional climates. Skirt-forming plants, where senescent leaves create hut-like cavities around the stem, create microsites that are sheltered from ambient conditions and extreme weather events, constituting potential refuges for wildlife. We investigate day and night temperatures and humidity for four locations (grass tree cavities, soil, 20 cm above-ground, 1 m above-ground) in a South Australian forest with relatively open canopy of stringybark eucalypts (Eucalyptus baxteri, E. obliqua) and an understorey of skirt-forming grass trees (Xanthorrhoea semiplana) at 5, 10, 20, and 40 m from the forest edge. We also measured the percentage of canopy and understorey covers. Generally, temperature and humidity differed significantly between more sheltered (grass tree cavities, soil) and open-air microsites, with the former being cooler during the day and warmer and more humid during the night. Furthermore, our results suggest that canopy cover tends to decrease, and understorey cover tends to increase, the temperature of microsites. Distance to the edge was not significantly related to temperature for any microsite, suggesting that the edge effect did not extend beyond 10 m from the edge. Overall, grass trees influenced microclimatic conditions by forming a dense understorey and providing cavities that are relatively insulated. The capacity of grass tree cavities to buffer external conditions increased linearly with ambient temperatures, by 0.46°C per degree increase in maximum and 0.25°C per degree decrease in minimum temperatures, potentially offsetting climate warming and enabling persistence of fauna within their thermal limits. These climate moderation properties will make grass trees increasingly important refuges as extreme weather events become more common under anthropogenic climate change.  相似文献   
194.
Plant density and size — two factors that represent plant survival and growth — are key determinants of yield but have rarely been analysed explicitly in the context of biodiversity–productivity relationships. Here, we derive equations to partition the net, complementarity and selection effects of biodiversity into additive components that reflect diversity-induced changes in plant density and size. Applications of the new method to empirical datasets reveal contrasting ways in which plant density and size regulate yield in species mixtures. In an annual plant diversity experiment, overyielding is largely explained by selection effects associated with increased size of highly productive plant species. In a tree diversity experiment, the cause of overyielding shifts from enhanced growth in tree size to reduced mortality by complementary use of canopy space during stand development. These results highlight the capability of the new method to resolve crucial, yet understudied, demographic links between biodiversity and productivity.  相似文献   
195.
Identifying the drivers of community structure and dynamics is a major pursuit in ecology. Emphasis is typically placed on the importance of local scale interactions when attempting to explain these fundamental ecological patterns. However, regional scale phenomena are also important predictors. The importance of regional scale context should be more evident in assemblages where multiple species are close to their range margins. Here, we test the importance of regional scale context using data from a temperate forest plot that contains two species groups – one near its northern range limit and one near its southern range limit. We show the proximity of species to their southern or northern range margins is linked to local scale co-occurrence, similarity in gene expression responses to a key environmental driver, demographic performance and inter-specific variation in conspecific negative density dependence. In sum, many of the key local scale patterns and processes of interest to community ecologists are linked to biogeographic context that is frequently ignored.  相似文献   
196.
Abstract The putative chaperone-like protein ClpE, required for biogenesis of the Escherichia coli capsule-like antigen CS31A, was compared with ten known periplasmic chaperones from E. coli, Klebsiella pneumoniae, Bordetella pertussis, Haemophilus influenzae and Yersinia pestis . The amino acid sequence alignment was superimposed onto the three-dimensional structure of the PapD chaperone of uropathogenic E. coli , and amino acid residues involved in maintaining the structure integrity of the suggested binding site were found identical in most of the 11 chaperones. Construction of a phylogenetic tree to investigate the relationship within the chaperone family has revealed interesting degrees of relatedness between the different proteins.  相似文献   
197.
198.
Precipitation variability and heatwaves are expected to intensify over much of inland Australia under most projected climate change scenarios. This will undoubtedly have impacts on the biota of Australian dryland systems. However, accurate modelling of these impacts is presently impeded by a lack of empirical research on drought/heatwave effects on native arid flora and fauna. During the 2018–2021 Australian drought, many parts of the continent's inland experienced their hottest, driest period on record. Here, we present the results of a field survey in 2021 involving indigenous rangers, scientists and national parks staff who assessed plant dieback during this drought at Ulur u-Kata Tjut a National Park (UKTNP), central Australia. Spatially randomized quadrat sampling of eight common and culturally important plants indicated the following plant death rates across UKTNP (in order of drought susceptibility): desert myrtle (Aluta maisonneuvei subsp. maisonneuvei) (91%), yellow flame grevillea (Grevillea eriostachya) (79%), Maitland's wattle (Acacia maitlandii) (67%), waxy wattle (A. melleodora) (65%), soft spinifex grass (Triodia pungens) (53%), mulga (A. aneura) (42%), desert oak (Allocasuarina decaisneana) (22%) and quandong (Santalum acuminatum) (0%). The sampling also detected that seedling recruitment was absent or minimal for all plants except soft spinifex, while a generalized linear mixed model (GLMM) indicated two-way interactions among species, plant size and stand density as important predictors of drought survival of adult plants. A substantial loss of biodiversity has occurred at UKTNP during the recent drought, with likely drivers of widespread plant mortality being extreme multi-year rainfall deficit (2019 recorded the lowest-ever annual rainfall at UKTNP [27 mm]) and record high summer temperatures (December 2019 recorded the highest-ever temperature [47.1°C]). Our findings indicate that widespread plant death and extensive vegetation restructuring will occur across arid Australia if the severity and frequency of droughts increase under climate change.  相似文献   
199.
Abstract. The availability of maj or plant resources was investigated in three vegetation types that were assumed to represent different stages of a secondary succession on heathland on the Lüneburger Heide, northwestern Germany. Canopy transmission and absorption of photosynthetically active radiation (PAR), soil-water availability, and nutrient (Ca, K, Mg, N, P) availability were monitored with high spatial and temporal resolution in (1) a Calluna vulgaris heathland, (2) a pioneer birch-pine forest and (3) a late-successional oak-beech forest, situated close to each other on comparable geological substrate (diluvial). Mean fractional transmission of PAR during summer decreased from 0.48 in the heathland to 0.04 in the oak-beech forest while the fractional canopy absorption increased from 0.49 to 0.92. Soil-water availability as indicated by the soil-water potential, was significantly influenced by differential canopy interception loss and characteristic rooting patterns in the three vegetation types. Annual mean nutrient concentrations in the equilibrium soil solution were similar or, for some elements, increased from the heathland to the birch-pine and the oak-beech forest despite a growing demand. A marked increase was found for the total nutrient pools in the soil-organic layer between early and late successional vegetation types. On the poor glacial parent material, nutrient pools seem to be strongly dependent on stand productivity and litter production which increased with succession. Thus, for nutrients, facilitation seems to be important in this type of succession.  相似文献   
200.
Development of planted seedlings of four canopy tree species in recently abandoned pastures (mown and unmown) and in ca. 40-yr old secondary dry forest in Guana-caste National Park, Costa Rica, was studied from July 1989–June 1992. The species were the light-demanding Cedrela odorata and Swietenia macrophylla, and the shade-tolerant Hymenaea courbaril and Manilkara chicle. Seedling mortality was high and primarily correlated with dry season drought. After the first dry season, M. chicle and C. odorata showed < 5 % survival in the pasture and 20 % in the forest, but after 3 yr survival had decreased to 3% in all plots. Survival of S. macrophylla was highest in the mown pasture (45 % after 3 yr) and lowest in the forest (10 %). For H. courbaril, survival was 40–55 % under all three conditions. Growth rates were low, with a height increment of < 15 cm/yr, possibly due to low precipitation in 1990 and 1991. All species grew taller in the pasture than in the forest. Differences in soil depth, texture and drainage appeared to contribute to variation in the results both within and between plots. Herbivory contributed to the lower survival of C. odorata and S. macrophylla in the forest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号