首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87694篇
  免费   5910篇
  国内免费   4648篇
  2024年   137篇
  2023年   1156篇
  2022年   1833篇
  2021年   2270篇
  2020年   2080篇
  2019年   2836篇
  2018年   2712篇
  2017年   1935篇
  2016年   2160篇
  2015年   2879篇
  2014年   4609篇
  2013年   6130篇
  2012年   3215篇
  2011年   4731篇
  2010年   3744篇
  2009年   4535篇
  2008年   4861篇
  2007年   4909篇
  2006年   4492篇
  2005年   4363篇
  2004年   3790篇
  2003年   3267篇
  2002年   3078篇
  2001年   2030篇
  2000年   1760篇
  1999年   1870篇
  1998年   1879篇
  1997年   1614篇
  1996年   1314篇
  1995年   1417篇
  1994年   1316篇
  1993年   1168篇
  1992年   1018篇
  1991年   791篇
  1990年   670篇
  1989年   578篇
  1988年   579篇
  1987年   532篇
  1986年   434篇
  1985年   493篇
  1984年   728篇
  1983年   495篇
  1982年   469篇
  1981年   333篇
  1980年   307篇
  1979年   266篇
  1978年   140篇
  1977年   89篇
  1976年   79篇
  1975年   47篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
为了验证转基因烟草中表达的外壳蛋白(CP)能够重新包被侵入的烟草花叶病毒(TMV)的假设,利用抗原表位标记的方法观察CP亚单位在病毒5′端的交换。通过PCR 方法将来源于鼠肝炎病毒(MHV) S蛋白的两个小肽段(11 a.a.和15 a.a.)的DNA序列分别插入TMV-U1 CP基因邻近3′端的两个位点,并构建了带有外源序列的TMV 侵染克隆V9 (11 a.a.)和E15 (15 a.a.)。通过体外转录反应,得到V9 RNA 及E15 RNA。突变病毒RNA 侵染烟草(Nicotiana tabacum )后表现不同特性。V9 和E15 侵染XanthiNN烟草后同野生型TMV一样产生枯斑。但是,当它们侵染Xanthinn 烟草时,V9 产生同侵染XanthiNN 烟草相同的枯斑,而E15的特性同TMV-U1几乎完全相同,能对Xanthinn 烟草进行系统侵染并在叶片中聚集大量的带有外源片段的外壳蛋白,而且病毒的结构极其稳定。V9 和E15 特性的差异可能是由于外源片段在外壳蛋白中存在位置的不同影响了外壳蛋白的结构所致  相似文献   
952.
通过比较小麦与玉米及鸭茅状摩擦禾属间杂交获得的胚与小麦正常自交的胚之间在不同发育时期过氧化物酶和酯酶的同工酶谱,发现过氧化物酶同工酶表现出时空顺序的特异性变化。在同一发育时期,远缘杂交的具胚子房和无胚子房之间存在过氧化物酶同工酶谱的差异,这可能涉及到与胚发育相关的同工酶的出现。远缘杂交的具胚子房和正常自交的小麦子房之间也有一定的酶谱差异。同时,同一材料还表现出不同发育时期的过氧化物酶酶谱差别。在远缘杂交后的胚发育期间,酯酶同工酶的时空表达不如过氧化物酶显著。此外,对远缘杂交后的胚中的水溶性蛋白质进行了SD S-PAGE分析,初步的分析结果表明,可能存在与胚发育相关的蛋白质。  相似文献   
953.
The effect of chronic administration of -guanidinopropionic acid (GPA) on the protein profiling, energy metabolism and right ventricular (RV) function was studied in the rat heart during the weaning and adolescence period. GPA was given in tap water (1–1.5%) using pair drink controls. The feeding of animals with GPA solution for a six week period resulted in elevation of heart to body weight ratio due to body growth retardation. GPA accumulated in the myocardium up to 67.37 ± 5.3 moles.g dry weight and the tissue content of total creatine, phosphocreatine and ATP was significantly decreased to 15%, 9% and 65% of control values respectively. Total activity of creatine kinase (CK) was not changed, but the proportion of mitochondrial (Mi) CK isoenzyme was decreased; the percentage of MB isoenzyme of CK was significantly higher. GPA treatment resulted in an elevation of the content of cardiac collagenous proteins and decrease of non-collagenous proteins in the heart; in parallel, a decrease of the collagen I to collagen III ratio was detected. The function of the RV was assessed using an isolated perfused heart with RV performing pressure-volume work. As compared to pair-drink controls, RV function was significantly impaired the GPA group: at any given right atrial filling pressure, the RV systolic pressure and the rate of pressure development were decreased by almost a factor of two. Elevation of the RV diastolic pressure with increasing pulmonary artery diastolic pressure was also significantly steeper in the GPA group which also showed decrease of cardiac output, especially at high outflow resistance. It may be assumed that chronic administration of GPA deeply influenced metabolic parameters, protein profiles and contractile function of the developing heart. On the other hand, concentrations of glucose, total lipids and triglycerides in blood plasma were not affected. All these data confirm the concept that the CK system is of central importance both for heart function and for the regulation of normal growth of cardiac myocytes.  相似文献   
954.
Guanine nucleotide-binding regulatory proteins (G proteins) play a major role in the regulation of a number of physiological processes, such as stimulation or Inhibition of adenylate cyclase activity or gaiting of ionic channels. Myocardial ischemia could induce the changes in receptor-G protein signal transduction system in the heart. Therefore, this article will focus on the role and alterations of G proteins (especially, Gs and Gi) in myocardial ischemia. The Gi protein rapidly loses functional activity during very early myocardial ischemia. In contrast to Gi protein, the function of Gs protein during this phase has not been evaluated. Moreover, the changes in Gs protein after 30 min of ischemia are contradictory. However, the sensitization of the adenylate cyclase activity in the very early phase of acute ischemia is gradually replaced by a decrease in adenylate cyclase activity with prolonged ischemia. The decrease in the function and amount of Gs protein may be one of the factors that induce these changes. The function of Gs protein was also decreased in the canine hearts with ischemia and reperfusion. In contrast to ischemia and reperfusion, there are no significant alterations in G proteins and modulation of adenylate cyclase in the stunned myocardium. It has become increasingly evident that Gi protein may play an important role in the cardioprotective effects of preconditioning. When -adrenoceptor densities are reduced in chronic myocardial ischemia, decreased in the amount and function of Gi protein and increased amount of Gs protein may play the role in preservation of the adenylate cyclase activity. These alterations in G proteins may play the important role in the myocardial function during myocardial ischemia.  相似文献   
955.
Recent investigations concentrate on the correlation between the myocardial expression of the inducible 70-kDa heat shock protein (HSP70i) by different stress conditions and its possible protective effects. Only few studies have focused on the involvement of small heat shock proteins in this process. We analyzed the location of the small heat shock protein HSP25 in isolated cardiomyocytes as well as its location and induction in isolated perfused hearts of rats. By immunofluorescence microscopy HSP25 was found to colocalize with actin in the I-band of myofibrils in cardiomyocytes of isolated perfused hearts as well as in isolated neonatal and adult cardiomyocytes. Hyperthermic perfusion of isolated hearts for 45 min resulted in modulation of different parameters of heart function and in induction of HSP25 and HSP70i. Temperatures higher than 43°C (44–46°C) were lethal with respect to the contractile function of the hearts. Compared to control hearts perfused at 37°C, significant increases during hyperthermic perfusion at 42°C and 43°C were obtained for heart rate, contraction velocity and relaxation velocity. In response to hyperthermia at 43°C and after subsequent normothermic perfusion for 135 min at 37°C, left ventricular pressure, contraction velocity and relaxation velocity remained significantly elevated. However, heart rate returned to control values immediately after the period of heat treatment. HSP25 is constitutively expressed even in normothermic perfused hearts as shown by Western blotting. Hyperthermia increased the content of HSP25 only in the left ventricular tissue. In contrast, HSP70i was strongly induced in all analyzed parts of the myocardium (left ventricle, right ventricle, septum). Our findings suggest a differential regulation of HSP25 and HSP70i expression in response to hyperthermia in isolated perfused hearts. The constitutively expressed HSP25 seems to be located adjacent to the myofibrils which implies a specific role of this protein even under unstressed conditions for the contractile function of the myocardium.  相似文献   
956.
Summary 1. Wobbler mice suffer an autosomal recessive mutation producing severe motoneuron degeneration and dense astrogliosis, with increased levels of glial fibrillary acidic protein (GFAP) in the spinal cord and brain stem. They have been considered animal models of amyotrophic lateral sclerosis and infantile spinal muscular atrophy. 2. Using Wobbler mice and normal littermates, we investigated the effects of the membrane-active steroid Lazaroid U-74389F on the number of GFAP-expressing astrocytes and glucocorticoid receptors (GR). Lazaroids are inhibitors of oxygen radical-induced lipid peroxidation, and proved beneficial in cases of CNS injury and ischemia. 3. Four days after pellet implantation of U-74389F into Wobbler mice, hyperplasia and hypertophy of GFAP-expressing astrocytes were apparent in the spinal cord ventral and dorsal horn, areas showing already intense astrogliosis in untreated Wobbler mice. In control mice, U-74389F also produced astrocyte hyperplasia and hypertophy in the dorsal horn and hyperplasia in the ventral-lateral funiculi of the cord. 4. Givenin vivo U-74389F did not change GR in spinal cord of Wobbler or control mice, in line with the concept that it is active in membranes but does not bind to GR. Besides, U-74390F did not compete for [3H]dexamethasone binding when addedin vitro. 5. The results suggest that stimulation of proliferation and size of GFAP-expressing astrocytes by U-74389F may be a novel mechanism of action of this compound. The Wobbler mouse may be a valuable animal model for further pharmacological testing of glucocorticoid and nonglucocorticoid steroids in neurodegenerative diseases.  相似文献   
957.
Trypsin-subtilisin inhibitor from marine turtle eggwhite refolded quantitatively from its fully reduced state atpH 8.5 in the presence of reduced and oxidized glutathione. The refolding process was studied by following the accompanying changes in inhibitory activity, fluorescence, sulfhydryl group titer, and hydrodynamic volume. The refolding process followed second-order kinetics with rate constants of 4.80×102 M–1 sec–1 for trypsin-inhibiting domain and 0.77× 102 M–1 sec–1 for subtilisin-inhibiting domain of the inhibitor at 30°C and their respective activation energies of the refolding process were 15.9 and 21.6 kcal/mol. Fluorescence intensity of the reduced inhibitor decreased with time of refolding until it corresponded to the intensity of the native inhibitor. The inhibitor contained 1–2%-helix, 40–42%-sheet, and 57–58% random coil structure. Refolded inhibitor gave a circular dichroic spectrum identical to that of the native inhibitor. A number of principal intermediates were detected as a function of the refolding time. Size-exclusion chromatography separated the intermediates differing in hydrodynamic volume (Stokes radius). The Stokes radius ranged from 23 Å (fully reduced inhibitor) to 18.8 Å (native inhibitor). Results indicated the independent refolding of two domains of the inhibitor and multiple pathways of folding were followed rather than an ordered sequential pathway.  相似文献   
958.
Protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase (PCM, E.C. 2.1.1.77) was previously shown to be enzymatically methyl esterified in an autocatalytic manner at altered aspartyl residues; methyl esters are observed in a subpopulation of the enzyme termed thePCM fraction [Lindquist and McFadden (1994),J. Protein Chem. 13, 23–30]. The altered aspartyl sites serving as methyl acceptors inPCM have now been localized by using proteolytic enzymes and chemical cleavage techniques in combination with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to identify fragments of the [3H]automethylated enzyme that contain a [3H]methyl ester. Methylation was positively identified at positions Asn188 and Asp217 in the enzyme sequence, a consequence of the spontaneous alteration of these sites tol-isoaspartyl ord-aspartyl sites and their methylation by active PCM molecules. The identification of more than one site of automethylation shows thatPCM is not a homogeneous population of damaged PCM molecules, but rather a complex population of molecules with a variety of age-altered damage sites.Abbreviations PCM protein (d-aspartyl/l-isoaspartyl) carboxyl methyltransferase - EDTA disodium ethylenediaminetetraacetate - PMSF phenylmethylsulfonyl fluoride - TEA trifluoroacetic acid - HPLC high-pressure liquid chromatography  相似文献   
959.
Summary 1. Expression of the apamin-sensitive K+ channel (SK+) in rat skeletal muscle is neurally regulated. The regulatory effect of the nerve over the expression of some muscle ion channels has been attributed to the electrical activity triggered by the nerve and/or to a trophic effect of some molecules transported from the soma to the axonal endings. 2. SK+ channels apparently are involved in myotonic dystrophy (MD), therefore understanding the factors that regulate their expression may ultimately have important clinical relevance. 3. To establish if axoplasmic transport is involved in this process, we used two experimental approaches in adult rats: (a) Both sciatic nerves were severed, leaving a short or a long nerve stump attached to the anterior tibialis (AT). (b) Colchicine or vinblastine (VBL), two axonal transport blockers of different potencies, was applied on one leg to the sciatic nerve. To determine whether electrical activity affects the expression of SK+ channels, denervated AT were directly stimulated. The corresponding contralateral muscles were used as controls. 4. With these experimental conditions we measured (a) apamin binding to muscle membranes, (b) muscle contractile characteristics, and (c) electromyographic activity. 5. In the short- and long-nerve stump experiments, 5 days after denervation125I-apamin binding to AT membranes was 2.0 times higher in the short-stump side. This difference disappeared at longer times. The delayed expression of SK+ channels in the muscle left with a longer nerve stump can be attributed to the extra axoplasm contained in the longer stump, which maintains a normally repressive signal for a longer period of time. Ten to 15 days after application of axonal transport blockers we found that the muscle half-relaxation time increased in the drug-treated side and apamin partially reverted the prolonged relaxation. Myotonic-like discharges specifically blockable by apamin were always present in the drug-treated leg.125I-Apamin binding, which is undetectable in a microsomal preparation from hind leg control muscles, was increased in the drug-treated preparations. Apamin binding to denervated and stimulated AT muscles was lower than in the contralateral unstimulated muscles [3.3±1.0 vs 6.8±0.8 (n=4) fmol/mg protein]. 6. Our results demonstrate that electrical activity and axoplasmic transport are involved in the control of expression of SK+ in rat skeletal muscle. However, the increased expression of this channel induces myotonic-like characteristics that are reversed by apamin. This myotonic activity could be a model for MD.  相似文献   
960.
Signalling by protein kinase C isoforms in the heart   总被引:11,自引:0,他引:11  
Understanding transmembrane signalling process is one of the major challenge of the decade. In most tissues, since Fisher and Krebs's discovery in the 1950's, protein phosphorylation has been widely recognized as a key event of this cellular function. Indeed, binding of hormones or neurotransmitters to specific membrane receptors leads to the generation of cytosoluble second messengers which in turn activate a specific protein kinase. Numerous protein kinases have been so far identified and roughly classified into two groups, namely serine/threonine and tyrosine kinases on the basis of the target amino acid although some more recently discovered kinases like MEK (or MAP kinase kinase) phosphorylate both serine and tyrosine residues.Protein kinase C is a serine/threonine kinase that was first described by Takai et al. [1] as a Ca- and phospholipid-dependent protein kinase. Later on, Kuo et al. [2] found that PKC was expressed in most tissues including the heart. The field of investigation became more complicated when it was found that the kinase is not a single molecular entity and that several isoforms exist. At present, 12 PKC isoforms and other PKC-related kinases [3] were identified in mammalian tissues. These are classified into three groups. (1) the Ca-activated -, -,and -PKCs which display a Ca-binding site (C2); (2) the Ca-insensitive -, -, -, -, and -PKCs. The kinases that belong to both of these groups display two cystein-rich domains (C1) which bind phorbol esters (for recent review on PKC structure, see [4]). (3) The third group was named atypical PKCs and include , , and -PKCs that lack both the C2 and one cystein-rich domain. Consequently, these isoforms are Ca-insensitive and cannot be activated by phorbol esters [5]. In the heart. evidence that multiple PKC isoforms exist was first provided by Kosaka et al. [6] who identified by chromatography at least two PKC-related isoenzymes. Numerous studies were thus devoted to the biochemical characterization of these isoenzymes (see [7] for review on cardiac PKCs) as well as to the identification of their substrates.This overview aims at updating the present knowledge on the expression, activation and functions of PKC isoforms in cardiac cells. (Mol Cell Biochem 157: 65–72, 1996)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号