首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8516篇
  免费   1429篇
  国内免费   2065篇
  2024年   75篇
  2023年   328篇
  2022年   228篇
  2021年   235篇
  2020年   479篇
  2019年   485篇
  2018年   554篇
  2017年   509篇
  2016年   517篇
  2015年   502篇
  2014年   544篇
  2013年   670篇
  2012年   445篇
  2011年   500篇
  2010年   352篇
  2009年   452篇
  2008年   441篇
  2007年   469篇
  2006年   424篇
  2005年   356篇
  2004年   331篇
  2003年   319篇
  2002年   320篇
  2001年   268篇
  2000年   238篇
  1999年   208篇
  1998年   188篇
  1997年   160篇
  1996年   154篇
  1995年   137篇
  1994年   147篇
  1993年   110篇
  1992年   109篇
  1991年   77篇
  1990年   74篇
  1989年   60篇
  1988年   65篇
  1987年   43篇
  1986年   47篇
  1985年   71篇
  1984年   57篇
  1983年   34篇
  1982年   52篇
  1981年   34篇
  1980年   36篇
  1979年   26篇
  1978年   26篇
  1977年   11篇
  1976年   17篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
This research investigates the carbon footprint of the lifecycle of console games, using the example of PlayStation®3 distribution in the UK. We estimate total carbon equivalent emissions for an average 8.8‐gigabyte (GB) game based on data for 2010. The bulk of emissions are accounted for by game play, followed by production and distribution. Two delivery scenarios are compared: The first examines Blu‐ray discs (BDs) delivered by retail stores, and the second, games files downloaded over broadband Internet. Contrary to findings in previous research on music distribution, distribution of games by physical BDs results in lower greenhouse gas emissions than by Internet download. The estimated carbon emissions from downloading only fall definitively below that of BDs for games smaller than 1.3 GB. Sensitivity analysis indicates that as average game file sizes increase, and the energy intensity of the Internet falls, the file size at which BDs would result in lower emissions than downloads could shift either up‐ or downward over the next few years. Overall, the results appear to be broadly applicable to title games within the European Union (EU), and for larger‐than‐average sized games in the United States. Further research would be needed to confirm whether similar findings would apply in future years with changes in game size and Internet efficiency. The study findings serve to illustrate why it is not always true that digital distribution of media will have lower carbon emissions than distribution by physical means when file sizes are large.  相似文献   
992.
Cryptomonads are unicellular algae that are important primary producers in various aquatic ecosystems. However, their ecological importance was often neglected owing to their brittleness. Their population in freshwater was thought to be regulated mainly by grazing pressure, and the effects of lake trophy were less important. In this study, the cryptomonad species in three basins of Lake Donghu, a shallow lake in China were identified, and their distribution, seasonal dynamics, and relationships with several environmental factors were investigated. Eight cryptomonads were identified at species level by morphological examination; species belonging to the genera Komma and Cryptomonas were most common. Cryptomonads displayed inconsistent distribution and population dynamics among the three basins of different trophic status. They were the dominant species in the eutrophic basin, while their proportion was lower in the hypertrophic basin and in the mesotrophic basin. The biomass of cryptomonads was highest in the hypertrophic region. As a whole, cryptomonads kept low biomass during winter, while rapid waxing and waning of their population was observed in the other seasons. Cryptomonads species exhibit distinct seasonal trends. Canonical correspondence analysis revealed water temperature and dissolved total nitrogen were the most important factors that affected the composition of the cryptomonads community. Spearman correlation analysis demonstrated that the biomass of cryptomonads was positively correlated with pH value, dissolved total nitrogen and dissolved organic carbon. In conclusion, lake trophy is a crucial factor affecting the total cryptomonads population.  相似文献   
993.
Reforestation of formerly cultivated land is widely understood to accumulate above‐ and belowground detrital organic matter pools, including soil organic matter. However, during 40 years of study of reforestation in the subtropical southeastern USA, repeated observations of above‐ and belowground carbon documented that significant gains in soil organic matter (SOM) in surface soils (0–7.5 cm) were offset by significant SOM losses in subsoils (35–60 cm). Here, we extended the observation period in this long‐term experiment by an additional decade, and used soil fractionation and stable isotopes and radioisotopes to explore changes in soil organic carbon and soil nitrogen that accompanied nearly 50 years of loblolly pine secondary forest development. We observed that accumulations of mineral soil C and N from 0 to 7.5 cm were almost entirely due to accumulations of light‐fraction SOM. Meanwhile, losses of soil C and N from mineral soils at 35 to 60 cm were from SOM associated with silt and clay‐sized particles. Isotopic signatures showed relatively large accumulations of forest‐derived carbon in surface soils, and little to no accumulation of forest‐derived carbon in subsoils. We argue that the land use change from old field to secondary forest drove biogeochemical and hydrological changes throughout the soil profile that enhanced microbial activity and SOM decomposition in subsoils. However, when the pine stands aged and began to transition to mixed pines and hardwoods, demands on soil organic matter for nutrients to support aboveground growth eased due to pine mortality, and subsoil organic matter levels stabilized. This study emphasizes the importance of long‐term experiments and deep measurements when characterizing soil C and N responses to land use change and the remarkable paucity of such long‐term soil data deeper than 30 cm.  相似文献   
994.
The southeastern United States is experiencing a rapid regional increase in the ratio of pine to deciduous forest ecosystems at the same time it is experiencing changes in climate. This study is focused on exploring how these shifts will affect the carbon sink capacity of southeastern US forests, which we show here are among the strongest carbon sinks in the continental United States. Using eight‐year‐long eddy covariance records collected above a hardwood deciduous forest (HW) and a pine plantation (PP) co‐located in North Carolina, USA, we show that the net ecosystem exchange of CO2 (NEE) was more variable in PP, contributing to variability in the difference in NEE between the two sites (ΔNEE) at a range of timescales, including the interannual timescale. Because the variability in evapotranspiration (ET) was nearly identical across the two sites over a range of timescales, the factors that determined the variability in ΔNEE were dominated by those that tend to decouple NEE from ET. One such factor was water use efficiency, which changed dramatically in response to drought and also tended to increase monotonically in nondrought years (P < 0.001 in PP). Factors that vary over seasonal timescales were strong determinants of the NEE in the HW site; however, seasonality was less important in the PP site, where significant amounts of carbon were assimilated outside of the active season, representing an important advantage of evergreen trees in warm, temperate climates. Additional variability in the fluxes at long‐time scales may be attributable to slowly evolving factors, including canopy structure and increases in dormant season air temperature. Taken together, study results suggest that the carbon sink in the southeastern United States may become more variable in the future, owing to a predicted increase in drought frequency and an increase in the fractional cover of southern pines.  相似文献   
995.
Forests often rebound from deforestation following industrialization and urbanization, but for many regions our understanding of where and when forest transitions happened, and how they affected carbon budgets remains poor. One such region is Eastern Europe, where political and socio‐economic conditions changed drastically over the last three centuries, but forest trends have not yet been analyzed in detail. We present a new assessment of historical forest change in the European part of the former Soviet Union and the legacies of these changes on contemporary carbon stocks. To reconstruct forest area, we homogenized statistics at the provincial level for ad 1700–2010 to identify forest transition years and forest trends. We contrast our reconstruction with the KK11 and HYDE 3.1 land change scenarios, and use all three datasets to drive the LPJ dynamic global vegetation model to calculate carbon stock dynamics. Our results revealed that forest transitions in Eastern Europe occurred predominantly in the early 20th century, substantially later than in Western Europe. We also found marked geographic variation in forest transitions, with some areas characterized by relatively stable or continuously declining forest area. Our data suggest extensive deforestation in European Russia already prior to ad 1700, and even greater deforestation in the 18th and 19th centuries than in the KK11 and HYDE scenarios. Based on our reconstruction, cumulative carbon emissions from deforestation were greater before 1700 (60 Pg C) than thereafter (29 Pg C). Summed over our entire study area, forest transitions led to a modest uptake in carbon over recent decades, with our dataset showing the smallest effect (<5.5 Pg C) and a more heterogeneous pattern of source and sink regions. This suggests substantial sequestration potential in regrowing forests of the region, a trend that may be amplified through ongoing land abandonment, climate change, and CO2 fertilization.  相似文献   
996.
Wheat diseases present a constant and evolving threat to food security. We have little understanding as to how increased atmospheric carbon dioxide levels will affect wheat diseases and thus the security of grain supply. Atmospheric CO2 exceeded the 400 ppmv benchmark in 2013 and is predicted to double or even treble by the end of the century. This study investigated the impact of both pathogen and wheat acclimation to elevated CO2 on the development of Fusarium head blight (FHB) and Septoria tritici blotch (STB) disease of wheat. Here, plants and pathogens were cultivated under either 390 or 780 ppmv CO2 for a period (two wheat generations, multiple pathogen subcultures) prior to standard disease trials. Acclimation of pathogens and the wheat cultivar Remus to elevated CO2 increased the severity of both STB and FHB diseases, relative to ambient conditions. The effect of CO2 on disease development was greater for FHB than for STB. The highest FHB disease levels and associated yield losses were recorded for elevated CO2‐acclimated pathogen on elevated CO2‐acclimated wheat. When similar FHB experiments were conducted using the disease‐resistant cultivar CM82036, pathogen acclimation significantly enhanced disease levels and yield loss under elevated CO2 conditions, thereby indicating a reduction in the effectiveness of the defence pathways innate to this wheat cultivar. We conclude that acclimation to elevated CO2 over the coming decades will have a significant influence on the outcome of plant–pathogen interactions and the durability of disease resistance.  相似文献   
997.
Insects are the most diverse organisms and often the most abundant animals in some ecosystems. Despite the importance of their functional roles and of the knowledge for conservation, the trophic ecology of many insect species is not fully understood. In this review, I present how stable carbon (C) and nitrogen (N) isotopes have been used to reveal the trophic ecology of insects over the last 30 years. The isotopic studies on insects have used differences in C isotope ratios between C3 and C4 plants, along vertical profiles of temperate and tropical forest stands, and between terrestrial and aquatic resources. These differences enable exploration of the relative importance of the food resources, as well as movement and dispersal of insects across habitats. The 13C‐enrichment (approximately 3‰) caused by saprotrophic fungi can allow the estimation of the importance of fungi in insect diets. Stable N isotopes have revealed food resource partitioning across diverse insect species above and belowground. Detritivorous insects often show a large trophic enrichment in 13C (up to 3‰) and 15N (up to 10‰) relative to the food substrates, soil organic matter. These values are greater than those commonly used for estimation of trophic level. This enrichment likely reflects the prevalence of soil microbial processes, such as fungal development and humification, influencing the isotopic signatures of diets in detritivores. Isotope analysis can become an essential tool in the exploration of insect trophic ecology in terms of biogeochemical C and N cycles, including trophic interactions, plant physiological and soil microbial processes.  相似文献   
998.
Warmer conditions over the past two decades have contributed to rapid expansion of bark beetle outbreaks killing millions of trees over a large fraction of western United States (US) forests. These outbreaks reduce plant productivity by killing trees and transfer carbon from live to dead pools where carbon is slowly emitted to the atmosphere via heterotrophic respiration which subsequently feeds back to climate change. Recent studies have begun to examine the local impacts of bark beetle outbreaks in individual stands, but the full regional carbon consequences remain undocumented for the western US. In this study, we quantify the regional carbon impacts of the bark beetle outbreaks taking place in western US forests. The work relies on a combination of postdisturbance forest regrowth trajectories derived from forest inventory data and a process‐based carbon cycle model tracking decomposition, as well as aerial detection survey (ADS) data documenting the regional extent and severity of recent outbreaks. We find that biomass killed by bark beetle attacks across beetle‐affected areas in western US forests from 2000 to 2009 ranges from 5 to 15 Tg C yr?1 and caused a reduction of net ecosystem productivity (NEP) of about 6.1–9.3 Tg C y?1 by 2009. Uncertainties result largely from a lack of detailed surveys of the extent and severity of outbreaks, calling out a need for improved characterization across western US forests. The carbon flux legacy of 2000–2009 outbreaks will continue decades into the future (e.g., 2040–2060) as committed emissions from heterotrophic respiration of beetle‐killed biomass are balanced by forest regrowth and accumulation.  相似文献   
999.
The world's oceans have undergone significant ecological changes following European colonial expansion and associated industrialization. Seabirds are useful indicators of marine food web structure and can be used to track multidecadal environmental change, potentially reflecting long‐term human impacts. We used stable isotope (δ13C, δ15N) analysis of feathers from glaucous‐winged gulls (Larus glaucescens) in a heavily disturbed region of the northeast Pacific to ask whether diets of this generalist forager changed in response to shifts in food availability over 150 years, and whether any detected change might explain long‐term trends in gull abundance. Sampled feathers came from birds collected between 1860 and 2009 at nesting colonies in the Salish Sea, a transboundary marine system adjacent to Washington, USA and British Columbia, Canada. To determine whether temporal trends in stable isotope ratios might simply reflect changes to baseline environmental values, we also analysed muscle tissue from forage fishes collected in the same region over a multidecadal timeframe. Values of δ13C and δ15N declined since 1860 in both subadult and adult gulls (δ13C, ~ 2–6‰; δ15N, ~4–5‰), indicating that their diet has become less marine over time, and that birds now feed at a lower trophic level than previously. Conversely, forage fish δ13C and δ15N values showed no trends, supporting our conclusion that gull feather values were indicative of declines in marine food availability rather than of baseline environmental change. Gradual declines in feather isotope values are consistent with trends predicted had gulls consumed less fish over time, but were equivocal with respect to whether gulls had switched to a more garbage‐based diet, or one comprising marine invertebrates. Nevertheless, our results suggest a long‐term decrease in diet quality linked to declining fish abundance or other anthropogenic influences, and may help to explain regional population declines in this species and other piscivores.  相似文献   
1000.
Lignin mineralization represents a critical flux in the terrestrial carbon (C) cycle, yet little is known about mechanisms and environmental factors controlling lignin breakdown in mineral soils. Hypoxia is thought to suppress lignin decomposition, yet potential effects of oxygen (O2) variability in surface soils have not been explored. Here, we tested the impact of redox fluctuations on lignin breakdown in humid tropical forest soils during ten‐week laboratory incubations. We used synthetic lignins labeled with 13C in either of two positions (aromatic methoxyl or propyl side chain Cβ) to provide highly sensitive and specific measures of lignin mineralization seldom employed in soils. Four‐day redox fluctuations increased the percent contribution of methoxyl C to soil respiration relative to static aerobic conditions, and cumulative methoxyl‐C mineralization was statistically equivalent under static aerobic and fluctuating redox conditions despite lower soil respiration in the latter treatment. Contributions of the less labile lignin Cβ to soil respiration were equivalent in the static aerobic and fluctuating redox treatments during periods of O2 exposure, and tended to decline during periods of O2 limitation, resulting in lower cumulative Cβ mineralization in the fluctuating treatment relative to the static aerobic treatment. However, cumulative mineralization of both the Cβ‐ and methoxyl‐labeled lignins nearly doubled in the fluctuating treatment relative to the static aerobic treatment when total lignin mineralization was normalized to total O2 exposure. Oxygen fluctuations are thought to be suboptimal for canonical lignin‐degrading microorganisms. However, O2 fluctuations drove substantial Fe reduction and oxidation, and reactive oxygen species generated during abiotic Fe oxidation might explain the elevated contribution of lignin to C mineralization. Iron redox cycling provides a potential mechanism for lignin depletion in soil organic matter. Couplings between soil moisture, redox fluctuations, and lignin breakdown provide a potential link between climate variability and the biochemical composition of soil organic matter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号