首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8519篇
  免费   1421篇
  国内免费   2084篇
  2024年   81篇
  2023年   329篇
  2022年   232篇
  2021年   235篇
  2020年   482篇
  2019年   485篇
  2018年   554篇
  2017年   509篇
  2016年   517篇
  2015年   502篇
  2014年   544篇
  2013年   670篇
  2012年   445篇
  2011年   500篇
  2010年   352篇
  2009年   452篇
  2008年   441篇
  2007年   469篇
  2006年   424篇
  2005年   356篇
  2004年   331篇
  2003年   319篇
  2002年   320篇
  2001年   268篇
  2000年   238篇
  1999年   208篇
  1998年   188篇
  1997年   160篇
  1996年   154篇
  1995年   137篇
  1994年   147篇
  1993年   110篇
  1992年   109篇
  1991年   77篇
  1990年   74篇
  1989年   60篇
  1988年   65篇
  1987年   43篇
  1986年   47篇
  1985年   71篇
  1984年   57篇
  1983年   34篇
  1982年   52篇
  1981年   34篇
  1980年   36篇
  1979年   26篇
  1978年   26篇
  1977年   11篇
  1976年   17篇
  1975年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In green leaves and a number of algae, photosynthetically derived carbon is ultimately converted into two carbohydrate end-products, sucrose and starch. Drainage of carbon from the Calvin cycle proceeds via triose phosphate, fructose 6-phosphate and glycollate. Gluconeogenesis in photosynthetic cells is controlled by light, inorganic phosphate and phosphorylated sugars. Light stimulates the production of dihydroxyacetone phosphate, the initial substrate for sucrose and starch synthesis, and inhibits the degradative pathways in the chloroplast. Phosphate inactivates reactions of synthesis and activates reactions of degradation. Among the phosphorylated sugars a special role is allocated to fructose 2,6-bisphosphate, which is present in the cytoplasm at very low concentrations and inhibits sucrose synthesis directly by inactivating pyrophosphatedependent phosphofructokinase. The synthesis of sucrose plays a central role in the partitioning of photosynthetic carbon. The cytoplasmic enzymes, fructose bisphosphate phosphatase and sucrose phosphate synthase are likely key points of regulation. The regulation is carried out by several effector metabolites. Fructose 2,6-bisphosphate is likely to be the main coordinator of the rate of sucrose synthesis, hence of photosynthetic carbon partitioning between sucrose and starch.Paper presented at the FESP meeting (Strasbourg, 1984)  相似文献   
72.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   
73.
Abstract The quantitative approach used here is based on a model comprising a well-stirred medium, an unstirred layer, and a CO2 absorbing leaf. The unstirred layer is divided up by planes into a number of sub-layers. Within each plane the concentration of each solute is everywhere the same as is the electric potential. These variables constitute the basic data. Thus the planes were characterized by their pH value. An equation is derived which enables the calculation of the basic data of a plane from the known data of another plane. In this way it is possible to calculate the basic data for all planes. From these data the rate of assimilation, the thickness of the unstirred layer and its sub-layers, the fluxes across the sub-layers and the conversions among the carbon components can be estimated. The CO2 flux decreases, and the HCO?3 flux increases towards the leaf. There are negative fluxes of OH& and CO2–3. H+ fluxes are of minor importance and can be ignored if the pH of the medium is higher than 8.0, provided no non-inorganic C buffers with appropriate pKa are present. The significance of the carbon diffusion facilitating effect of an inorganic carbon system is expressed in various ways. The values obtained represent maxima, as the assumption is made that the equilibrium reactions are very fast. It is argued that even better effects are possible if the back-diffusion of CO2–3 could be prevented by lowering the pH of the unstirred layer.  相似文献   
74.
Conidiation in Alternaria cichorii Nattras is reversibly stimulated by near ultraviolet radiation (NUV, ca 313 nm) and inhibited by blue light (ca 450 nm) and seems to be a mycochrome-mediated process. After induction with plane-polarized NUV, blue light polarized perpendicularly to the NUV was more effective in counteracting the induction than was blue light polarized parallel to the NUV. From this the conclusions are drawn that (a) both the blue-absorbing component (presumably a flavo-protein) and the PNUV of the mycochrome system are membrane-bound and that (b) the transition moment associated with blue light absorption in the presumed flavoprotein forms an angle of at least 53° with the transition moment associated with NUV absorption in PNUV.  相似文献   
75.
Light control of extractable nitrate reductase activity in higher plants   总被引:3,自引:0,他引:3  
Light regulation of extractable nitrate reductase (NR) activity of higher plants is complicated by: 1) involvement of several photoreceptors, 2) differences in the relative importance of the several photoreceptors among species and among developmental stages of the same species, 3) two types of effects – alteration of activity of existing NR and influences on de novo synthesis of NR, and 4) differing forms of NR within the same species. The interrelationships of all of these factors are not clear. It may be that each system will have to be understood separately before a general model can be developed. Immunochemical quantification of NR from systems exposed to varied light regimes may enhance our understanding of this area. Currently few general conclusions can be made; however, we think that the following statements are true or are usually true: (1) Phytochrome influences extractable NR activity by the low irradiance response and high irradiance response in etiolated tissues. (2) In de-etiolated tissues phytochrome can influence NR activity decay at the end of a light period by the low irradiance response. (3) The phytochrome equilibrium or the absolute level of Pfr influences extractable NR activity in green tissues under white light. (4) Blue light influences extractable NR activity through phytochrome and another, unknown, blue light-absorbing pigment. Flavins may be involved in vitro in reactivation of inactivated NR. (5) Photosynthesis does not directly influence the induction of the forms of NR that require substrate and light for induction. (6) In some tissues there appears to be a close link between nitrite-reducing and nitrate-reducing capabilities. (7) Much circumstantial evidence from kinetic and protein-synthesis-inhibitor studies and the only available immunochemical data indicate that light induces de novo synthesis of NR, resulting in increased extractable activity.  相似文献   
76.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   
77.
Cycling of soil carbon in the first year after a clear-felling was compared with that before the felling in a Japanese red pine forest in Hiroshima Prefecture, west Japan. The daily mean temperature at the soil surface in summer was increased after the felling in comparison to that before felling, and the water content of both the A0 layer and the surface mineral soil was decreased due to the loss of the forest canopy. The rate of weight loss of the A0 layer was reduced after felling. However, accumulation of the A0 layer rapidly decreased because of the lack of litter supply to the forest floor. Low soil respiration after felling was mainly caused by the cessation of root respiration. Analysis of annual soil carbon cycling was then conducted using a compartment model. The relative decomposition rate of the A0 layer decreased whereas that of humus and dead roots in mineral soil increased to some extent after felling. The accumulation of carbon in mineral soil, however, increased slightly due to the supply of humus from roots killed by the felling.  相似文献   
78.
The characteristic of arylhydrocarbon hydroxylase system in fetal liver microsomes of rat was investigated. NADH-synergistic effect on NADPH-dependent arylhydrocarbon hydroxylase was observed in fetal liver microsomes of rat but not in maternal liver microsomes. NADH-synergistic effect decreased in parallel with the decrease of the ratio of cytochrome b5/cytochrome P-450 in liver microsomes. The cytochrome P-450 in arylhydrocarbon hydroxylase system in fetal liver microsomes of rat seemed to be different from that in offspring liver microsomes in respect of its dependency on cytochrome b5 system for its maximum activity.  相似文献   
79.
A method for the determination of bicarbonate in buffer solutions between pH 7.5 and 8.75 and in stock solutions of NaHCO3 is described. The HCO-3 is reacted with phosphoenolpyruvate (PEP) in the presence of PEP carboxylase (EC 4.1.1.31) and the oxaloacetate formed reduced to malate by NADH in the reaction catalyzed by malate dehydrogenase (EC 1.1.1.37). The extent of oxidation of NADH is measured spectrophotometrically. Experiments using standard solutions show that 1 mol of NADH is oxidized per mol of HCO-3 added. The method was used to establish the precautions needed to prepare buffer solutions containing less than 1% of the bicarbonate which would be present in the same buffers in equilibrium with air.  相似文献   
80.
The seeds (achenes) of Laportea bulbifera require a chilling to break their dormancy and are negatively photoblastic. Their germination is inhibited by both continuous blue light and continuous or prolonged far-red radiation. The germination of de-coated seeds, prepared by removing the fruit coats, however, was strongly inhibited by continuous far-red, but not by continuous blue light. Photoreversible germination by a brief irradiation with red light occurred when the chilled seeds were exposed to prolonged far-red light. These results suggest that far-red light may regulate the germination of L. bulbifera seeds through the phytochrome system which exists in the regions other than fruit coats and that the blue light reaction may be governed by other photoreceptor system(s).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号