首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49994篇
  免费   17714篇
  国内免费   555篇
  2023年   103篇
  2022年   122篇
  2021年   591篇
  2020年   2959篇
  2019年   4526篇
  2018年   4818篇
  2017年   4729篇
  2016年   4443篇
  2015年   4348篇
  2014年   4367篇
  2013年   4925篇
  2012年   4045篇
  2011年   4283篇
  2010年   3703篇
  2009年   2586篇
  2008年   2726篇
  2007年   2182篇
  2006年   2151篇
  2005年   1829篇
  2004年   1469篇
  2003年   1547篇
  2002年   1351篇
  2001年   1037篇
  2000年   606篇
  1999年   418篇
  1998年   176篇
  1997年   157篇
  1996年   140篇
  1995年   150篇
  1994年   141篇
  1993年   144篇
  1992年   125篇
  1991年   109篇
  1990年   108篇
  1989年   80篇
  1988年   102篇
  1987年   87篇
  1986年   69篇
  1985年   115篇
  1984年   125篇
  1983年   85篇
  1982年   86篇
  1981年   74篇
  1980年   58篇
  1979年   41篇
  1978年   40篇
  1977年   41篇
  1975年   30篇
  1974年   29篇
  1973年   33篇
排序方式: 共有10000条查询结果,搜索用时 583 毫秒
221.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   
222.
Germination studies were carried out with seeds of Spergularia marina L. Griseb produced over an interval of six months (June-November). The response of the seeds to light and dark, various constant and alternating temperature regimes, and salinity were determined. In addition, the effects of soil moisture status at the time of seed production on the subsequent germination response of seeds were also determined. Light was an absolute requirement for germination. While a constant temperature regime did not generally favour germination of seed of any month, alternating temperature greatly enhanced germination with an optimum at 5/15°C in all seeds. When imbibed in solutions of different salinities, seeds collected in July and October behaved like true halophyte seeds whereas those collected in June. August, September and November behaved like glycophyte seeds.
High concentration of gibberellic acid (3 000 μ M ) stimulated dark germination in the June and November seed lots, but in light, low GA3 concentration (300 μ M ) stimulated germination most. The addition of kinetin (30 μ M ) plus gibberellic acid enhanced germination in the dark in contrast to GA3 alone; kinetin alone stimulated a very low percentage germination.
The moisture status of the soil at the time seeds were produced did not affect the germination response of an early seed crop (July) but affected that of the later seeds (August).
Judging from the different germination responses, it appears that the seeds belong to at least two physiological groups, one which appears to need either a dark-wet or cold-wet pretreatmem for high germination to occur; and the other group which does not need pretreatmem. The ecological significance of these varied responses is discussed in relation to the survival of the species in its habitat.  相似文献   
223.
Cell populations of Paramecium bursaria show arhythmic mating reactivity after exposure to constant light (LL) for more than 2 wk. After this arhythmic population is exposed to darkness for 9 h, the mating reactivity rhythm of the cell population reappears. The phases of rhythms in individual cells are synchronized to each other. When the arhythmic population in constant light is exposed to dark pulses of various durations, the first peak of the recovered mating reactivity rhythm appears 6 h after the end of the dark pulse. Thus, in the case of dark pulses to cells in LL, the transition from dark to light sets the phase of the subsequent mating reactivity rhythm. When an arhythmic population in LL is transferred to constant darkness (DD), a rhythm of mating reactivity also appears and, in this case, the first peak of the rhythm occurs 18 h after the LL to DD transition. Therefore, arhythmic populations of cells in LL can be synchronized by either a dark pulse or by transition to continuous darkness. When the arhythmic populations in LL were transferred to various light/dark (LD) cycles, the mating reactivity rhythms entrained to LD cycles of 18 to 30 h in duration. Finally, mating rhythms can also be synchronized by treatment with puromycin (400 μg/ml for 6–18 h).  相似文献   
224.
Second virial coefficient of alpha-crystallin   总被引:1,自引:0,他引:1  
X W Wang  F A Bettelheim 《Proteins》1989,5(2):166-169
Light scattering studies were performed on bovine alpha-crystallin measuring the scattering intensities as a function of scattering angle, concentration, and temperature. The data yielded the molecular weight, radius of gyration, and second virial coefficient of alpha-crystallin at different temperatures. The second virial coefficient increased with increasing temperature. Both the enthalpy and entropy of solution of alpha-crystallin are positive. The Flory theta temperature was found to be 271 K.  相似文献   
225.
It has been suggested that turbulence with the resultant light/dark cycle and light gradient through which phytoplankton move, enhances their productivity. The stationary bottle incubation technique for estimating rates of primary productivity has mainly been criticized because of bottle effects, the elimination of natural turbulence and the presence of photo-inhibition. In a series of experiments where productivity was measured over static profiles and compared to the productivity in a mixed system, no definite conclusion could be reached regarding the effect of varying light/dark cycles of medium frequency (seconds to minutes). It appeared as though the ratio of the euphotic depth to mixing depth (Z eu/Z m) influenced productivity more than the duration of the light/dark cycle. The static bottle incubation method gave higher integral productivities than the mixed samples at low ratio's ofZ eu/Z m. It is suggested that mixing has two separate, but synergistic effects i.e. it not only moves the phytoplankton cells through a light/dark cycle, but also decreases the boundary layer, which increases the rate of exchange through the cell wall of nutrients and metabolites. In doing so more nutrients are available and light could be utilized more efficiently and therefore, productivity is increased.  相似文献   
226.
At the developmental stage at which the apical hook passed the 3rd and 4th nodes, dark-grown seedlings of pea ( Pisum sativum L. cv. Progress No.9) opened the hook upright and then formed a new hook above the node nearly in the opposite direction to the previous one. In cv. Alaska, in contrast, many (about 84%) seedlings closed the hook in the original direction after they partially (up to about 110°) opened it at the 3rd node, thus doing a wagging movement, while a small percentage (about 16%) of the seedlings reversed the hook direction. Exposure to red light of cv. Alaska seedlings for 10 min increased the percentage of the hook reversion up to 71% or more. The hook reversion was never observed except when the hook part passed the nodes, suggesting the involvement of the nodes in the phenomenon.  相似文献   
227.
Sailer H  Nick P  Schafer E 《Planta》1990,180(3):378-382
Gravitropic stimulation of maize (Zea mays L.) seedlings resulted in a continuous curvature of the coleoptiles in a direction opposing the vector of gravity when the seedlings were rotated on a horizontal clinostat. The orientation of this response, however, was reversed when the gravitropic stimulation was preceeded by symmetric preirradiation with blue light (12.7 mol photons·m–2). The fluence-response curve of this blue light exhibited a lower threshold at 0.5 mol·m–2, and could be separated into two parts: fluences exceeding 5 mol·m–2 reversed the direction of the gravitropic response, whereas for a range between the threshold and 4 mol·m–2 a split population was obtained. In all cases a very strong curvature resulted either in the direction of gravity or in the opposite orientation. A minor fraction of seedlings, however, curved towards the caryopsis. Furthermore, the capacity of blue light to reverse the direction of the gravitropic response disappeared with the duration of gravitropic stimulation and it depended on the delay time between both stimulations. Thistonic blue-light influence appears to be transient, which is in contrast to the stability observed fortropistic blue-light effects.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   
228.
Abstract. The effect of atmospheric humidity on the kinetics of stomatal responses was quantified in gas exchange experiments using sugarcane ( Saccharum spp. hybrid) and soybean ( Glycine max ). Pulses of blue light were used to elicit pulses of stomatal conductance that were mediated by the specific blue light response of guard cells. Kinetic parameters of the conductance response were more closely related to leaf-air vapour pressure difference (VPD) than to relative humidity or transpiration. Increasing VPD significantly accelerated stomatal opening in both sugarcane and soybean, despite an approximately five-fold faster response in sugarcane. In contrast, the kinetics of stomatal recovery (closure) following the pulse were similar in the two species. Acceleration of opening by high VPD was observed even under conditions where soybean exhibited a feedforward response of decreasing transpiration (E) with increasing evaporative demand (VPD). This result suggests that epidermal, rather than bulk leaf, water status mediates the VPD effect on stomatal kinetics. The data are consistent with the hypothesis that increased cpidermal water loss at high VPD decreases the backpressure exerted by neighbouring cells on guard cells. allowing more rapid stomatal opening per unit of guard cell metabolic response to blue light.  相似文献   
229.
Barley seedlings (Hordeum vulgare L. Boone) were grown at 20°C with 16 h/8 h light/dark cycle of either high (H) intensity (500 mole m-2 s-1) or low (L) intensity (55 mole m-2 s-1) white light. Plants were transferred from high to low (H L) and low to high (L H) light intensity at various times from 4 to 8 d after leaf emergence from the soil. Primary leaves were harvested at the beginning of the photoperiod. Thylakoid membranes were isolated from 3 cm apical segments and assayed for photosynthetic electron transport, Photosystem II (PS II) atrazine-binding sites (QB), cytochrome f(Cytf) and the P-700 reaction center of Photosystem I (PS I). Whole chain, PS I and PS II electron transport activities were higher in H than in L controls. QB and Cytf were elevated in H plants compared with L plants. The acclimation of H L plants to low light occurred slowly over a period of 7 days and resulted in decreased whole chain and PS II electron transport with variable effects on PS I activity. The decrease in electron transport of H L plants was associated with a decrease in both QB and Cytf. In L H plants, acclimation to high light occurred slowly over a period of 7 days with increased whole chain, PS I and PS II activities. The increase in L H electron transport was associated with increased levels of QB and Cytf. In contrast to the light intensity effects on QB levels, the P-700 content was similar in both control and transferred plants. Therefore, PS II/PS I ratios were dependent on light environment.Abbreviations Asc ascorbate - BQ 2,5-dimethyl-p-benzoquinone - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DCIP 2,6-dichlorophenolindophenol - H control plants grown under high light intensity - H L plants transferred from high to low light intensity - L low control plants grown under low light intensity - L H plants transferred from low to high light intensity - MV methyl viologen - P-700 photoreaction center of Photosystem I - QB atrazine binding site - TMPD N,N,N,N-tetramethyl-p-phenylenediamine Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh, NC. Paper No. 11990 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27695-7643, USA.  相似文献   
230.
When excited by ultraviolet radiation, leaves of a great number of species of higher plants exhibit emission of blue fluorescence, comparable in intensity to the red emission of chlorophyll. The fluorescence decay of the blue emission of spinach leaves recorded by single photon counting techniques is decomposed into exponential components and it is shown that at least three different components are present. The lifetime of the three components does not show significant variations with the excitation or emission wavelengths. The excitation and emission spectra of each component were determined. The nature of the chemical compounds which cause this emission is discussed in relation to these spectra.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号