首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50990篇
  免费   17946篇
  国内免费   332篇
  2024年   24篇
  2023年   155篇
  2022年   179篇
  2021年   700篇
  2020年   3083篇
  2019年   4584篇
  2018年   4856篇
  2017年   4807篇
  2016年   4499篇
  2015年   4396篇
  2014年   4441篇
  2013年   5053篇
  2012年   4091篇
  2011年   4277篇
  2010年   3689篇
  2009年   2597篇
  2008年   2732篇
  2007年   2191篇
  2006年   2195篇
  2005年   1824篇
  2004年   1476篇
  2003年   1586篇
  2002年   1381篇
  2001年   1061篇
  2000年   584篇
  1999年   430篇
  1998年   181篇
  1997年   172篇
  1996年   168篇
  1995年   152篇
  1994年   174篇
  1993年   161篇
  1992年   146篇
  1991年   130篇
  1990年   126篇
  1989年   86篇
  1988年   96篇
  1987年   90篇
  1986年   88篇
  1985年   114篇
  1984年   105篇
  1983年   59篇
  1982年   91篇
  1981年   61篇
  1980年   47篇
  1979年   34篇
  1978年   36篇
  1977年   14篇
  1976年   13篇
  1973年   14篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
42.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
43.
Aim We propose a phylogenetic hypothesis for the marine‐derived sciaenid genus Plagioscion in the context of geomorphology and adaptation to freshwaters of South America, and assess the extent to which contemporary freshwater hydrochemical gradients influence diversification within a widely distributed Plagioscion species, Plagioscion squamosissimus. Location Amazon Basin and South America. Methods Using nuclear and mitochondrial DNA sequence data, phylogenetic analyses were conducted on the five nominal Plagioscion species, together with representatives from Pachyurus and Pachypops, using character and model‐based methods. Genealogical relationships and population genetic structure of 152 P. squamosissimus specimens sampled from the five major rivers and three hydrochemical settings/‘colours’ (i.e. white, black and clear water) of the Amazon Basin were assessed. Results Phylogenetic analyses support the monophyly of Plagioscion in South America and identify two putative cryptic species of Plagioscion. Divergence estimates suggest that the Plagioscion ancestor invaded South America via a northern route during the late Oligocene to early Miocene. Within P. squamosissimus a strong association of haplotype and water colour was observed, together with significant population structure detected between water colours. Main conclusions Our analyses of Plagioscion are consistent with a biogeographic scenario of early Miocene marine incursions into South America. Based on our phylogenetic results, the fossil record, geomorphological history and distributional data of extant Plagioscion species, we propose that marine incursions into western Venezuela between the late Oligocene and early Miocene were responsible for the adaptation to freshwaters in Plagioscion species. Following the termination of the marine incursions during the late Miocene and the establishment of the modern Amazon River, Plagioscion experienced a rapid diversification. Plagioscion squamosissimus arose during that time. The formation of the Amazon River probably facilitated population and range expansions for this species. Further, the large‐scale hydrochemical gradients within the Amazon Basin appear to be acting as ecological barriers maintaining population discontinuities in P. squamosissimus even in the face of gene flow. Our results highlight the importance of divergent natural selection through time in the generation and maintenance of sciaenid diversity in Amazonia.  相似文献   
44.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   
45.
46.
47.
The balance between mitochondrial fission and fusion is disrupted during mitosis, but the mechanism governing this phenomenon in plant cells remains enigmatic. Here, we used mitochondrial matrix‐localized Kaede protein (mt‐Kaede) to analyze the dynamics of mitochondrial fission in BY‐2 suspension cells. Analysis of the photoactivatable fluorescence of mt‐Kaede suggested that the fission process is dominant during mitosis. This finding was confirmed by an electron microscopic analysis of the size distribution of mitochondria in BY‐2 suspension cells at various stages. Cellular proteins interacting with Myc‐tagged dynamin‐related protein 3A/3B (AtDRP3A and AtDRP3B) were immunoprecipitated with anti‐Myc antibody‐conjugated beads and subsequently identified by microcapillary liquid chromatography–quadrupole time‐of‐flight mass spectrometry (CapLC Q‐TOF) MS/MS. The identified proteins were broadly associated with cytoskeletal (microtubular), phosphorylation, or ubiquitination functions. Mitotic phosphorylation of AtDRP3A/AtDRP3B and mitochondrial fission at metaphase were inhibited by treatment of the cells with a CdkB/cyclin B inhibitor or a serine/threonine protein kinase inhibitor. The fate of AtDRP3A/3B during the cell cycle was followed by time‐lapse imaging of the fluorescence of Dendra2‐tagged AtDRP3A/3B after green‐to‐red photoconversion; this experiment showed that AtDRP3A/3B is partially degraded during interphase. Additionally, we found that microtubules are involved in mitochondrial fission during mitosis, and that mitochondria movement to daughter cell was limited as early as metaphase. Taken together, these findings suggest that mitotic phosphorylation of AtDRP3A/3B promotes mitochondrial fission during plant cell mitosis, and that AtDRP3A/3B is partially degraded at interphase, providing mechanistic insight into the mitochondrial morphological changes associated with cell‐cycle transitions in BY‐2 suspension cells.  相似文献   
48.
The melanogenic actions of the melanocortins are mediated by the melanocortin‐1 receptor (MC1R). MC1R is a member of the G‐protein‐coupled receptors (GPCR) superfamily expressed in cutaneous and hair follicle melanocytes. Activation of MC1R by adrenocorticotrophin or α‐melanocyte stimulating hormone is positively coupled to the cAMP signaling pathway and leads to a stimulation of melanogenesis and a switch from the synthesis of pheomelanins to the production of eumelanic pigments. The functional behavior of the MC1R agrees with emerging concepts in GPCR signaling including dimerization, coupling to more than one signaling pathway and a high agonist‐independent constitutive activity accounting for inverse agonism phenomena. In addition, MC1R displays unique properties such as an unusually high number of natural variants often associated with clearly visible phenotypes and the occurrence of endogenous peptide antagonists. Therefore MC1R is an ideal model to study GPCR function. Here we review our current knowledge of MC1R structure and function, with emphasis on information gathered from the analysis of natural variants. We also discuss recent data on the regulation of MC1R function by paracrine and endocrine factors and by external stimuli such as ultraviolet light.  相似文献   
49.
Abstract. The nearest‐neighbour technique is used to infer competition and facilitation between the three most abundant species in a semi‐arid region of western South Africa. Relationships among the shrubs Leipoldtia schultzei and Ruschia robusta, which are leaf‐succulent members of the Mesembryanthemaceae (‘mesembs’) and Hirpicium alienatum a non‐succulent Asteraceae, were compared on two adjacent sites with different histories of browsing intensity. Competition was more prevalent and more important than facilitation. The only evidence for facilitation was found at the heavily‐browsed site where the palatable Hirpicium was larger under the unpalatable Leipoldtia. Generally the prevalence and importance of competition was reduced at the heavily‐browsed site. Strong evidence was obtained for intraspecific competition in each of the three species; also, competition was evident between the two mesembs, where Leipoldtia was competitively dominant over Ruschia, although neither species inhibited Hirpicium. Minimal competition between the mesembs and the asteraceous shrub was interpreted in terms of differentiation in rooting depth, and competition within the mesembs, in terms of overlap in rooting depth. The mesembs had the bulk of their roots in the top 5 cm of soil, while the asteraceous shrub had the bulk of its roots, and all its fine roots, at greater depths. The shallow‐rooted morphology of the mesembs is well adapted to utilize small rainfall events, which occur frequently in the Succulent Karoo, and do not penetrate the soil deeply. Modifications of existing methods are applied for analysing nearest‐neighbour interactions.  相似文献   
50.
The contribution of the renin–angiotensin–aldosterone system (RAAS) to the development of congestive heart failure (CHF) and hypertension (HT) has long been recognized. Medications that are commonly used in the course of CHF and HT are most often given with morning food for the sake of convenience and therapeutic compliance. However, biological rhythms and their responsiveness to environmental clues such as food intake may noticeably impact the effectiveness of drugs used in the management of cardiovascular disorders. Only sparse information about the effect of feeding schedules on the biology of the RAAS and blood pressure (BP) is presently available. Two studies were designed to explore the chronobiology of renin activity (RA), BP, renal sodium (UNa,fe) and potassium (UK,fe) handling in relation to meal timing in dogs. In a first experiment (Study a), blood and urinary samples for measurement of RA, UNa,fe and UK,fe were drawn from 18 healthy beagle dogs fed a normal-sodium diet at either 07:00, 13:00 or 19:00?h. In a second experiment (Study b), BP was recorded continuously from six healthy, telemetered beagle dogs fed a similar diet at 07:00, or 19:00?h. Data were collected throughout 24-h time periods, and analyzed by means of nonlinear mixed-effects models. Differences between the geometric means of early versus late time after feeding observations were further compared using parametric statistics. In agreement with our previous investigations, the results indicate that RA, UNa,fe, UK,fe, systolic, and diastolic BP oscillate with a circadian periodicity in dogs fed a regular diet at 07:00?h. A cosine model with a fixed 24-h period was found to fit the variations of RA, UK,fe and BP well, whereas cyclic changes in UNa,fe were best characterized by means of a combined cosine and surge model, reflecting a postprandial sodium excretion followed by a monotonous decay. Our data show that feeding time has a marked influence on the chronobiology of the renin cascade, urinary electrolytes, and BP. Introducing a 6- or 12-h delay in the dogs’ feeding schedule caused a shift of similar magnitude (05:06 and 12:32?h for Studies a and b, respectively) in the rhythm of these biomarkers. In all study groups, RA and BP exhibited a marked fall just after food intake. The drop in RA is consistent with sodium and water-induced body fluid expansion, while the reduction of BP could be related to the decreased activity of renin and the secretion of vasodilatory gut peptides. An approximately 1.5-fold (1.2–1.6-fold) change between the average early and late time after feeding observations was found for RA (p?<?0.0001), UNa,fe (p?<?0.01) and UK,fe (p?<?0.05). Postprandial variations in BP, albeit small (ca. 10?mmHg), were statistically significant (p?<?0.01) and supported by the model-based analysis.

In conclusion, the timing of food intake appears to be pivotal to the circadian organization of the renin cascade and BP. This synchronizing effect could be mediated by feeding-related signals, such as dietary sodium, capable of entraining circadian oscillators downstream of the master, light–dark-adjusted pacemaker in the suprachiasmatic nucleus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号