首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5250篇
  免费   595篇
  国内免费   596篇
  6441篇
  2024年   25篇
  2023年   224篇
  2022年   286篇
  2021年   401篇
  2020年   324篇
  2019年   351篇
  2018年   261篇
  2017年   263篇
  2016年   231篇
  2015年   278篇
  2014年   386篇
  2013年   372篇
  2012年   244篇
  2011年   189篇
  2010年   150篇
  2009年   204篇
  2008年   213篇
  2007年   233篇
  2006年   232篇
  2005年   229篇
  2004年   196篇
  2003年   199篇
  2002年   162篇
  2001年   122篇
  2000年   101篇
  1999年   73篇
  1998年   60篇
  1997年   61篇
  1996年   39篇
  1995年   51篇
  1994年   44篇
  1993年   43篇
  1992年   35篇
  1991年   30篇
  1990年   17篇
  1989年   16篇
  1988年   23篇
  1987年   13篇
  1986年   11篇
  1985年   16篇
  1984年   7篇
  1983年   8篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1950年   3篇
排序方式: 共有6441条查询结果,搜索用时 15 毫秒
961.
962.
通过了解湘西地区猕猴桃溃疡病致病菌分类地位和基因类型,初步探讨其致病的分子机理。采用纯培养法分离猕猴桃溃疡病菌;基于16S~23S rRNA基因内转录间隔序列进行病原菌的系统发育分析;通过基因组测序和生物信息学分析解析其致病的分子机理。从“米良1号”和“红阳”猕猴桃感病枝条中分离获得5株溃疡病菌,编号为L211、L212、L321、L322、L323;通过形态特征和16S~23S rRNA基因内转录间隔序列分析,鉴定5株细菌均为丁香假单胞菌猕猴桃致病变种(Pseudomonas syringae pv.actinidae,Psa)。以菌株L211为代表进行体外猕猴桃枝条接种实验表明能引起典型溃疡病症状。通过菌株L211的全基因组测序和生物信息学分析,获得5 741条基因数目,长5 412 072 bp;基因功能注释发现菌株L211携带121种毒力因子、71个植物互作因子和77个耐药基因;同时,基因组单核苷酸多态性分析发现病原菌L211为基因Ⅲ型Psa。引起湘西地区猕猴桃溃疡病的病原菌是丁香假单胞菌猕猴桃致病变种基因Ⅲ型,与国内外报道的引起猕猴桃溃疡病大流行的致病菌一致。猕猴桃溃疡病发病...  相似文献   
963.
964.
To gain genetic insights into the early-flowering phenotype of ornamental cherry, also known as sakura, we determined the genome sequences of two early-flowering cherry (Cerasus × kanzakura) varieties, ‘Kawazu-zakura’ and ‘Atami-zakura’. Because the two varieties are interspecific hybrids, likely derived from crosses between Cerasus campanulata (early-flowering species) and Cerasus speciosa, we employed the haplotype-resolved sequence assembly strategy. Genome sequence reads obtained from each variety by single-molecule real-time sequencing (SMRT) were split into two subsets, based on the genome sequence information of the two probable ancestors, and assembled to obtain haplotype-phased genome sequences. The resultant genome assembly of ‘Kawazu-zakura’ spanned 519.8 Mb with 1,544 contigs and an N50 value of 1,220.5 kb, while that of ‘Atami-zakura’ totalled 509.6 Mb with 2,180 contigs and an N50 value of 709.1 kb. A total of 72,702 and 69,528 potential protein-coding genes were predicted in the genome assemblies of ‘Kawazu-zakura’ and ‘Atami-zakura’, respectively. Gene clustering analysis identified 2,634 clusters uniquely presented in the C. campanulata haplotype sequences, which might contribute to its early-flowering phenotype. Genome sequences determined in this study provide fundamental information for elucidating the molecular and genetic mechanisms underlying the early-flowering phenotype of ornamental cherry tree varieties and their relatives.  相似文献   
965.
The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.  相似文献   
966.
Clones representing two distinct barley catalase genes, Cat1 and Cat2, were found in a cDNA library prepared from seedling polysomal mRNA. Both clones were sequenced, and their deduced amino acid sequences were found to have high homology with maize and rice catalase genes. Cat1 had a 91% deduced amino acid sequence identity to CAT-1 of maize and 92% to CAT B of rice. Cat2 had 72 and 79% amino acid sequence identities to maize CAT-2 and-3 and 89% to CAT A of rice. Barley, maize or rice isozymes could be divided into two distinct groups by amino acid homologies, with one group homologous to the mitochondria-associated CAT-3 of maize and the other homologous to the maize peroxisomal/glyoxysomal CAT-1. Both barley CATs contained possible peroxisomal targeting signals, but neither had favorable mitochondrial targeting sequences. Cat1 mRNA occurred in whole endosperms (aleurones plus starchy endosperm), in isolated aleurones and in developing seeds, but Cat2 mRNA was virtually absent. Both mRNAs displayed different developmental expression patterns in scutella of germinating seeds. Cat2 mRNA predominated in etiolated seedling shoots and leaf blades. Barley genomic DNA contained two genes for Cat1 and one gene for Cat2. The Cat2 gene was mapped to the long arm of chromosome 4, 2.9 cM in telomeric orientation from the mlo locus conferring resistance to the powdery mildew fungus (Erysiphe graminis f.sp. hordei).  相似文献   
967.
Recent research on microbial degradation of aromatic and other refractory compounds in anoxic waters and soils has revealed that nitrate-reducing bacteria belonging to the Betaproteobacteria contribute substantially to this process. Here we present the first complete genome of a metabolically versatile representative, strain EbN1, which metabolizes various aromatic compounds, including hydrocarbons. A circular chromosome (4.3 Mb) and two plasmids (0.21 and 0.22 Mb) encode 4603 predicted proteins. Ten anaerobic and four aerobic aromatic degradation pathways were recognized, with the encoding genes mostly forming clusters. The presence of paralogous gene clusters (e.g., for anaerobic phenylacetate oxidation), high sequence similarities to orthologs from other strains (e.g., for anaerobic phenol metabolism) and frequent mobile genetic elements (e.g., more than 200 genes for transposases) suggest high genome plasticity and extensive lateral gene transfer during metabolic evolution of strain EbN1. Metabolic versatility is also reflected by the presence of multiple respiratory complexes. A large number of regulators, including more than 30 two-component and several FNR-type regulators, indicate a finely tuned regulatory network able to respond to the fluctuating availability of organic substrates and electron acceptors in the environment. The absence of genes required for nitrogen fixation and specific interaction with plants separates strain EbN1 ecophysiologically from the closely related nitrogen-fixing plant symbionts of the Azoarcus cluster. Supplementary material on sequence and annotation are provided at the Web page .Electronic Supplementary Material Supplementary material is available for this article at Dedicated to Prof. Dr. h.c. Gerhard Gottschalk on the occasion of his 70th birthday.  相似文献   
968.
Experience‐dependent changes in DNA methylation can exert profound effects on neuronal function and behaviour. A single learning event can induce a variety of DNA modifications within the neuronal genome, some of which may be common to all individuals experiencing the event, whereas others may occur in a subset of individuals. Variations in experience‐induced DNA methylation may subsequently confer increased vulnerability or resilience to the development of neuropsychiatric disorders. However, the detection of experience‐dependent changes in DNA methylation in the brain has been hindered by the interrogation of heterogeneous cell populations, regional differences in epigenetic states and the use of pooled tissue obtained from multiple individuals. Methyl CpG Binding Domain Ultra‐Sequencing (MBD Ultra‐Seq) overcomes current limitations on genome‐wide epigenetic profiling by incorporating fluorescence‐activated cell sorting and sample‐specific barcoding to examine cell‐type‐specific CpG methylation in discrete brain regions of individuals. We demonstrate the value of this method by characterizing differences in 5‐methylcytosine (5mC) in neurons and non‐neurons of the ventromedial prefrontal cortex of individual adult C57BL/6 mice, using as little as 50 ng of genomic DNA per sample. We find that the neuronal methylome is characterized by greater CpG methylation as well as the enrichment of 5mC within intergenic loci. In conclusion, MBD Ultra‐Seq is a robust method for detecting DNA methylation in neurons derived from discrete brain regions of individual animals. This protocol will facilitate the detection of experience‐dependent changes in DNA methylation in a variety of behavioural paradigms and help identify aberrant experience‐induced DNA methylation that may underlie risk and resiliency to neuropsychiatric disease.  相似文献   
969.
970.
Next‐generation sequencing is providing us with vast amounts of genetic data, yet we are currently struggling in our attempts to make sense of them. In particular, it has proven difficult to link phenotypic divergence and speciation to genome level divergence. In the current issue of Molecular Ecology, Ruegg et al. ( 2014 ) present new empirical results from two closely related bird taxa. They use a promising approach combining genome scan and candidate gene analysis. Their results suggest that we may have been looking in vain for candidate speciation genes by focusing only on genes found within genomic islands of divergence. This is because genes important in divergence and speciation may not be detected by genome scans and because features of the genomic architecture per se may have a large effect on the pattern of genome divergence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号