首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   87篇
  国内免费   34篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   13篇
  2020年   14篇
  2019年   18篇
  2018年   24篇
  2017年   10篇
  2016年   19篇
  2015年   28篇
  2014年   30篇
  2013年   28篇
  2012年   22篇
  2011年   11篇
  2010年   9篇
  2009年   11篇
  2008年   18篇
  2007年   21篇
  2006年   9篇
  2005年   8篇
  2004年   11篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   5篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   3篇
  1994年   5篇
  1993年   4篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有387条查询结果,搜索用时 15 毫秒
381.
The mixed ligand complexes [{Gd(OCMe2-i-Pr)2Cp}2], [{Sm(OCMe2-i-Pr)2Cp}2], and [Sm2(OCMe2-i-Pr)3Cp3] were synthesized by reacting [LnCp3] with HOCMe2-i-Pr. X-ray crystallographic studies show that the three complexes each have two bridging alkoxide ligands linking two metal atoms. The coordination geometries at the metals are distorted tetrahedral.  相似文献   
382.
The fast, single‐step and easily scalable production by plasma electrolytic oxidation (PEO) of large area TiO2 electrodes with excellent photoactivity in water splitting under simulated solar light is systematically investigated here. In particular, the effects that the cell voltage (100–180 V) and the processing time (0.5–15 min) have on the electrode properties are studied. The PEO‐produced oxide layers are porous, the predominant crystalline structure shifting from anatase, to an anatase‐rutile mixture, and finally to rutile by rising the cell voltage. The electrodes show a double‐layered structure, with a more compact layer at the interface with the titanium substrate and a thick porous layer on the external surface. The photocurrent density versus wavelength reflects the phase composition, with a maximum incident photon‐to‐current efficiency of 90% at 320 nm. The highest H2 production rate is attained with the mixed anatase‐rutile electrode prepared by 300 s‐long PEO at 150 V.  相似文献   
383.
Forestry is raising concern about the outbreaks of European spruce bark beetle, Ips typographus, causing extensive damage to the spruce forest and timber values. Precise monitoring of these beetles is a necessary step towards preventing outbreaks. Current commercial monitoring methods are catch-based and lack in both temporal and spatial resolution. In this work, light scattering from beetles is characterized, and the feasibility of entomological lidar as a tool for long-term monitoring of bark beetles is explored. Laboratory optical properties, wing thickness, and wingbeat frequency of bark beetles are reported, and these parameters can infer target identity in lidar data. Lidar results from a Swedish forest with controlled bark beetle release event are presented. The capability of lidar to simultaneously monitor both insects and a pheromone plume mixed with chemical smoke governing the dispersal of many insects is demonstrated. In conclusion, entomological lidar is a promising tool for monitoring bark beetles.  相似文献   
384.
High energy batteries urgently required to power electric vehicles are restricted by a number of challenges, one of which is the sluggish kinetics of cell reactions under low temperatures. A novel approach is reported to improve the low temperature performance of high energy batteries through rational construction of low impedance anode and cathode interface films. Such films are simultaneously formed on both electrodes via the reduction and oxidation of a salt, lithium difluorobis(oxalato) phosphate. The formation mechanisms of these interface films and their contributions to the improved low temperature performances of high energy batteries are demonstrated using various physical and electrochemical techniques on a graphite/LiNi0.5Co0.2Mn0.3O2 battery using 1 m LiPF6‐ethylene carbonate/ethyl methyl carbonate (1/2, in weight) baseline electrolyte. It is found that the interface impedances, especially the one on the anode, constitute the main obstacle to capacity delivery of high energy batteries at low temperatures, while the salt containing fluorine and oxalate substructures used as additives can effectively suppress them.  相似文献   
385.
386.
Cell wall polysaccharide suspensions (mainly β-glucan) was isolated from baker's yeasts (Saccharomyces cerevisiae) and used for the preparation of films. Glycerol was added as a plasticizer. Purity and composition of the films were tested by elemental analysis, enzymatic assay of α- and β-glucans, monosaccharide composition analysis (total hydrolysis, HPAEC) and vibration spectroscopy (FTIR, FT Raman). Surface properties and the degree and type of crystallinity, together with ageing effects, were estimated by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). Mechanical and thermal properties were characterized by tensile tests and difference scanning calorimetry (DSC), respectively. The prepared films were water insoluble, compact, non-porous, exhibit no pronounced crystallinity and consist of granular-like and fibre microstructures, which could be assigned as cell wall residues and released polysaccharide macromolecules. Certain structural changes in the film surface during one-year shelf storage can be related to reorientation and decomposition of surface macromolecules due to reaction with the ambient atmosphere, rather than to crystallization phenomena.  相似文献   
387.
The aim of this study was to characterize chayotextle starch films reinforced with cellulose (C) and cellulose nanoparticle (CN) (at concentrations of 0.3%, 0.5%, 0.8% and 1.2%), using thermal, mechanical, physicochemical, permeability, and water solubility tests. C was acid-treated to obtain CN. The films were prepared by casting; potato starch and C were used as the control. The solubility of the starch films decreased with the addition of C and CN compared with its respective film without C and CN. No statistical difference (α = 0.05) was found in the films added with different concentrations of C and CN. In general, the mechanical properties were improved with the addition of C and CN, and higher values of tensile strength and elastic modulus were determined in the films reinforced with CN. The melting temperature and enthalpy increased with the addition of C and CN, and the values of both thermal parameters were higher in the films with CN than with C; the enthalpy value of the film decreased when the concentration of C or CN increased in the composite. Low concentration of C and CN is better distributed in the matrix film. The addition of C and CN in the starch films improved some mechanical, barrier, and functional properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号