首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   30篇
  国内免费   8篇
  2023年   6篇
  2022年   1篇
  2021年   5篇
  2020年   12篇
  2019年   12篇
  2018年   14篇
  2017年   6篇
  2016年   7篇
  2015年   15篇
  2014年   14篇
  2013年   17篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   17篇
  2008年   17篇
  2007年   14篇
  2006年   17篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   11篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有276条查询结果,搜索用时 31 毫秒
31.
32.
As coral bleaching events become more frequent and intense, our ability to predict and mitigate future events depends upon our capacity to interpret patterns within previous episodes. Responses to thermal stress vary among coral species; however the diversity of coral assemblages, environmental conditions, assessment protocols, and severity criteria applied in the global effort to document bleaching patterns creates challenges for the development of a systemic metric of taxon‐specific response. Here, we describe and validate a novel framework to standardize bleaching response records and estimate their measurement uncertainties. Taxon‐specific bleaching and mortality records (2036) of 374 coral taxa (during 1982–2006) at 316 sites were standardized to average percent tissue area affected and a taxon‐specific bleaching response index (taxon‐BRI) was calculated by averaging taxon‐specific response over all sites where a taxon was present. Differential bleaching among corals was widely variable (mean taxon‐BRI = 25.06 ± 18.44%, ±SE). Coral response may differ because holobionts are biologically different (intrinsic factors), they were exposed to different environmental conditions (extrinsic factors), or inconsistencies in reporting (measurement uncertainty). We found that both extrinsic and intrinsic factors have comparable influence within a given site and event (60% and 40% of bleaching response variance of all records explained, respectively). However, when responses of individual taxa are averaged across sites to obtain taxon‐BRI, differential response was primarily driven by intrinsic differences among taxa (65% of taxon‐BRI variance explained), not conditions across sites (6% explained), nor measurement uncertainty (29% explained). Thus, taxon‐BRI is a robust metric of intrinsic susceptibility of coral taxa. Taxon‐BRI provides a broadly applicable framework for standardization and error estimation for disparate historical records and collection of novel data, allowing for unprecedented accuracy in parameterization of mechanistic and predictive models and conservation plans.  相似文献   
33.
Increases in reported incidence of ciguatera fish poisoning (hereafter ciguatera) have been linked to warmer sea temperatures that are known to trigger coral bleaching events. The drivers that trigger blooms of ciguatera-causing dinoflagellates on the Great Barrier Reef (GBR) are poorly understood. This study investigated the effects of increased temperatures and lowered salinities, often associated with environmental disturbance events, on the population growth of two strains of the potentially ciguatera-causing dinoflagellate, Gambierdiscus carpenteri (NQAIF116 and NQAIF380). Both strains were isolated from the central GBR with NQAIF116 being an inshore strain and NQAIF380 an isolate from a stable environment of a large coral reef aquarium exhibit in ReefHQ, Townsville, Australia. Species of Gambierdiscus are often found as part of a mixed assemblage of benthic toxic dinoflagellates on macroalgal substrates. The effect of assemblage structure of dinoflagellates on the growth of Gambierdiscus populations has, however, not been explored. The study, therefore investigated the growth of G. carpenteri within mixed assemblages of benthic dinoflagellates. Population growth was monitored over a period of 28 days under three salinities (16, 26 and 36) and three temperature (24, 28 and 34 °C) conditions in a fully crossed experimental design. Temperature and salinity had a significant effect on population growth. Strain NQAIF380 exhibited significantly higher growth at 28 °C compared to strain NQAIF116, which had highest growth at 24 °C. When strain NQAIF116 was co-cultured with the benthic dinoflagellates, Prorocentrum lima and Ostreopsis sp., inhibitory effects on population growth were observed at a salinity of 36. In contrast, growth stimulation of G. carpenteri (strain NQAIF116) was observed at a salinity of 26 and particularly at 16 when co-cultured with Ostreopsis-dominated assemblages. Range expansion of ciguatera-causing dinoflagellates could lead to higher frequency of reported ciguatera illness in populated temperate Australian regions, outside the tropical range of the GBR. Therefore, the findings on salinity and temperature tolerance of two strains of G. carpenteri indicates potential adaptability to different local environmental conditions. These are baseline data for future investigations into the potential southward range expansion of ciguatera-causing dinoflagellates originating from the GBR.  相似文献   
34.
35.
The symbiosis between reef-building corals and their algal endosymbionts (zooxanthellae of the genus Symbiodinium) is highly sensitive to temperature stress, which makes coral reefs vulnerable to climate change. Thermal tolerance in corals is known to be substantially linked to the type of zooxanthellae they harbour and, when multiple types are present, the relative abundance of types can be experimentally manipulated to increase the thermal limits of individual corals. Although the potential exists for this to translate into substantial thermal acclimatization of coral communities, to date there is no evidence to show that this takes place under natural conditions. In this study, we show field evidence of a dramatic change in the symbiont community of Acropora millepora, a common and widespread Indo-Pacific hard coral species, after a natural bleaching event in early 2006 in the Keppel Islands (Great Barrier Reef). Before bleaching, 93.5% (n=460) of the randomly sampled and tagged colonies predominantly harboured the thermally sensitive Symbiodinium type C2, while the remainder harboured a tolerant Symbiodinium type belonging to clade D or mixtures of C2 and D. After bleaching, 71% of the surviving tagged colonies that were initially C2 predominant changed to D or C1 predominance. Colonies that were originally C2 predominant suffered high mortality (37%) compared with D-predominant colonies (8%). We estimate that just over 18% of the original A. millepora population survived unchanged leaving 29% of the population C2 and 71% D or C1 predominant six months after the bleaching event. This change in the symbiont community structure, while it persists, is likely to have substantially increased the thermal tolerance of this coral population. Understanding the processes that underpin the temporal changes in symbiont communities is key to assessing the acclimatization potential of reef corals.  相似文献   
36.
Antioxidant ability of the water-soluble derivative of fullerene (C60), prepared by high-degree hydroxylation [C60-(OH)32·8H2O] or C60/γ-cyclodextrin (1:2 mol/mol) clathrate formation [C60/(γ-CD)2], was assessed by electron spin resonance method and β-carotene bleaching assay. These C60 derivatives have an ability to diminish a 1:2:2:1 quartet ESR spectrum attributed to hydroxyl radicals (OH) as shown by DMPO-spin trap/ESR method. Meanwhile, a singlet radical-signal different from OH-attributed signals increased in a manner dependent on concentrations of C60-(OH)32·8H2O. This might suggest that C60-(OH)32·8H2O scavenges OH owing to dehydrogenation of C60-(OH)32·8H2O, and is simultaneously oxidized to a stable radical species, which may be a dehydrogenated fullerenol radical (C60-O). Furthermore, these water-soluble derivatives of C60 suppressed fading of yellowish color characteristic of intact β-carotene in β-carotene bleaching assay. Antioxidant abilities of these derivatives were assessed as retention of yellowish color (viz absorbance at 470 nm) for 180 min. Namely, β-carotene-attributed chromaticity (% relative absorbance at 470 nm compared with the control) after 180 min was 69% for C60-(OH)32·8H2O (400 μM: C60-eq.), and 32% for C60/(γ-CD)2 (400 μM: C60-eq.), whereas it was 6% for l(+)-ascorbic acid (400 μM) which is hydrophilic, and 85% for (±)-α-tocopherol (400 μM) which is lipophilic, respectively. Thus C60-(OH)32·8H2O and C60/(γ-CD)2 can scavenge OH, and have a distinct antioxidative activity in the aqueous system containing linoleic acid which is abundantly contained in the cell membrane together with other unsaturated lipids. These C60 derivatives have a potential to protect the cell membrane from oxidative stress due to OH.  相似文献   
37.
To investigate bleaching mechanisms in coral-zooxanthella symbiotic systems, it is important to study the cellular- or tissue-level responses of corals to stress. We established an experimental system to study the stress responses of coral cells using coral cell aggregates. Dissociated coral cells aggregate to form spherical bodies, which rotate by ciliary movement. These spherical bodies (tissue balls) stop rotating and disintegrate when exposed to a thermal stress. Tissue balls prepared from dissociated cells of Fungia sp. and Pavona divaricata were exposed to either elevated temperature (31 °C, with 25 °C as the control) or elevated temperature in the presence of exogenous antioxidants (ascorbic acid and catalase, or mannitol). The survival curves of tissue balls were markedly different between 31 and 25 °C. At 31 °C, most tissue balls disintegrated within 24 h, whereas at 25 °C, most tissue balls survived for more than 24 h. There was a negative correlation between survival time and the zooxanthella density of tissue balls at 31 °C, but no significant relationship was found at 25 °C. Antioxidants extended the survival time of tissue balls at high temperature, suggesting that zooxanthellae produce reactive oxygen species under stress. These results indicate that zooxanthellae produce harmful substances and damage coral cells under high-temperature stress. Tissue balls provide a good experimental system with which to study the effects of stress and various chemical reagents on corals cells.  相似文献   
38.
Climate warming is occurring at a rate not experienced by life on Earth for 10 s of millions of years, and it is unknown whether the coral‐dinoflagellate (Symbiodinium spp.) symbiosis can evolve fast enough to ensure coral reef persistence. Coral thermal tolerance is partly dependent on the Symbiodinium hosted. Therefore, directed laboratory evolution in Symbiodinium has been proposed as a strategy to enhance coral holobiont thermal tolerance. Using a reciprocal transplant design, we show that the upper temperature tolerance and temperature tolerance range of Symbiodinium C1 increased after ~80 asexual generations (2.5 years) of laboratory thermal selection. Relative to wild‐type cells, selected cells showed superior photophysiological performance and growth rate at 31°C in vitro, and performed no worse at 27°C; they also had lower levels of extracellular reactive oxygen species (exROS). In contrast, wild‐type cells were unable to photosynthesise or grow at 31°C and produced up to 17 times more exROS. In symbiosis, the increased thermal tolerance acquired ex hospite was less apparent. In recruits of two of three species tested, those harbouring selected cells showed no difference in growth between the 27 and 31°C treatments, and a trend of positive growth at both temperatures. Recruits that were inoculated with wild‐type cells, however, showed a significant difference in growth rates between the 27 and 31°C treatments, with a negative growth trend at 31°C. There were no significant differences in the rate and severity of bleaching in coral recruits harbouring wild‐type or selected cells. Our findings highlight the need for additional Symbiodinium genotypes to be tested with this assisted evolution approach. Deciphering the genetic basis of enhanced thermal tolerance in Symbiodinium and the cause behind its limited transference to the coral holobiont in this genotype of Symbiodinium C1 are important next steps for developing methods that aim to increase coral bleaching tolerance.  相似文献   
39.
The symbiotic interaction between cnidarians, such as corals and sea anemones, and the unicellular algae Symbiodinium is regulated by yet poorly understood cellular mechanisms, despite the ecological importance of coral reefs. These mechanisms, including host–symbiont recognition and metabolic exchange, control symbiosis stability under normal conditions, but also lead to symbiosis breakdown (bleaching) during stress. This study describes the repertoire of the sterol‐trafficking proteins Niemann‐Pick type C (NPC1 and NPC2) in the symbiotic sea anemone Anemonia viridis. We found one NPC1 gene in contrast to the two genes (NPC1 and NPC1L1) present in vertebrate genomes. While only one NPC2 gene is present in many metazoans, this gene has been duplicated in cnidarians, and we detected four NPC2 genes in A. viridis. However, only one gene (AvNPC2‐d) was upregulated in symbiotic relative to aposymbiotic sea anemones and displayed higher expression in the gastrodermis (symbiont‐containing tissue) than in the epidermis. We performed immunolabelling experiments on tentacle cross sections and demonstrated that the AvNPC2‐d protein was closely associated with symbiosomes. In addition, AvNPC1 and AvNPC2‐d gene expression was strongly downregulated during stress. These data suggest that AvNPC2‐d is involved in both the stability and dysfunction of cnidarian–dinoflagellate symbioses.  相似文献   
40.
Mass coral bleaching events caused by elevated seawater temperatures result in extensive coral loss throughout the tropics, and are projected to increase in frequency and severity. If bleaching becomes an annual event later in this century, more than 90% of coral reefs worldwide may be at risk of long‐term degradation. While corals can recover from single isolated bleaching and can acclimate to recurring bleaching events that are separated by multiple years, it is currently unknown if and how they will survive and possibly acclimatize to annual coral bleaching. Here, we demonstrate for the first time that annual coral bleaching can dramatically alter thermal tolerance in Caribbean corals. We found that high coral energy reserves and changes in the dominant algal endosymbiont type (Symbiodinium spp.) facilitated rapid acclimation in Porites divaricata, whereas low energy reserves and a lack of algal phenotypic plasticity significantly increased susceptibility in Porites astreoides to bleaching the following year. Phenotypic plasticity in the dominant endosymbiont type of Orbicella faveolata did not prevent repeat bleaching, but may have facilitated rapid recovery. Thus, coral holobiont response to an isolated single bleaching event is not an accurate predictor of its response to bleaching the following year. Rather, the cumulative impact of annual coral bleaching can turn some coral species ‘winners’ into ‘losers’, and can also facilitate acclimation and turn some coral species ‘losers’ into ‘winners’. Overall, these findings indicate that cumulative impact of annual coral bleaching could result in some species becoming increasingly susceptible to bleaching and face a long‐term decline, while phenotypically plastic coral species will acclimatize and persist. Thus, annual coral bleaching and recovery could contribute to the selective loss of coral diversity as well as the overall decline of coral reefs in the Caribbean.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号