首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   238篇
  免费   30篇
  国内免费   8篇
  276篇
  2023年   6篇
  2022年   1篇
  2021年   5篇
  2020年   12篇
  2019年   12篇
  2018年   14篇
  2017年   6篇
  2016年   7篇
  2015年   15篇
  2014年   14篇
  2013年   17篇
  2012年   7篇
  2011年   10篇
  2010年   10篇
  2009年   17篇
  2008年   17篇
  2007年   14篇
  2006年   17篇
  2005年   7篇
  2004年   8篇
  2003年   4篇
  2002年   4篇
  2001年   11篇
  2000年   3篇
  1999年   7篇
  1998年   4篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有276条查询结果,搜索用时 15 毫秒
101.
Anthropogenic stress has been shown to reduce coral coverage in ecosystems all over the world. A phase shift towards an algae‐dominated system may accompany coral loss. In this case, the composition of the reef‐associated fish assemblage will change and human communities relying on reef fisheries for income and food security may be negatively impacted. We present a case study based on the Raja Ampat Archipelago in Eastern Indonesia. Using a dynamic food web model, we simulate the loss of coral reefs with accompanied transition towards an algae‐dominated state and quantify the likely change in fish populations and fisheries productivity. One set of simulations represents extreme scenarios, including 100% loss of coral. In this experiment, ecosystem changes are driven by coral loss itself and a degree of habitat dependency by reef fish is assumed. An alternative simulation is presented without assumed habitat dependency, where changes to the ecosystem are driven by historical observations of reef fish communities when coral is lost. The coral–algal phase shift results in reduced biodiversity and ecosystem maturity. Relative increases in the biomass of small‐bodied fish species mean higher productivity on reefs overall, but much reduced landings of traditionally targeted species.  相似文献   
102.
Mass coral bleaching is linked to elevated sea surface temperatures, 1-2 degrees C above average, during periods of intense light. These conditions induce the expulsion of zooxanthellae from the coral host in response to photosynthetic damage in the algal symbionts. The mechanism that triggers this release has not been clearly established and to further our knowledge of this process, fluorescence rise kinetics have been studied for the first time. Corals that were exposed to elevated temperature (33 degrees C) and light (280 mumol photons m(-2) s(-1)), showed distinct changes in the fast polyphasic induction of chlorophyll-a fluorescence, indicating biophysical changes in the photochemical processes. The fluorescence rise over the first 2000ms was monitored in three species of corals for up to 8 h, with a PEA fluorometer and an imaging-PAM. Pocillopora damicornis showed the least impact on photosynthetic apparatus, while Acropora nobilis was the most sensitive, with Cyphastrea serailia intermediate between the other two species. A. nobilis showed a remarkable capacity for recovery from bleaching conditions. For all three species, a steady decline in the slope of the initial rise and the height of the J-transient was observed, indicating the loss of functional Photosystem II (PS II) centres under elevated-temperature conditions. A significant loss of PS II centres was confirmed by a decline in photochemical quenching when exposed to bleaching stress. Non-photochemical quenching was identified as a significant mechanism for dissipating excess energy as heat under the bleaching conditions. Photophosphorylation could explain this decline in PS II activity. State transitions, a component of non-photochemical quenching, was a probable cause of the high non-photochemical quenching during bleaching and this mechanism is associated with the phosphorylation-induced dissociation of the light harvesting complexes from the PS II reaction centres. This reversible process may account for the coral recovery, particularly in A. nobilis.  相似文献   
103.
Lipoxygenases (LOXs) are iron- or manganese-containing oxidative enzymes found in plants, animals, bacteria and fungi. LOXs catalyze the oxidation of polyunsaturated fatty acids to the corresponding highly reactive hydroperoxides. Production of hydroperoxides by LOX can be exploited in different applications such as in bleaching of colored components, modification of lipids originating from different raw materials, production of lipid derived chemicals and production of aroma compounds. Most application research has been carried out using soybean LOX, but currently the use of microbial LOXs has also been reported. Development of LOX composition with high activity by heterologous expression in suitable production hosts would enable full exploitation of the potential of LOX derived reactions in different applications. Here, we review the biological role of LOXs, their heterologous production, as well as potential use in different applications. LOXs may fulfill an important role in the design of processes that are far more environmental friendly than currently used chemical reactions. Difficulties in screening for the optimal enzymes and producing LOX enzymes in sufficient amounts prevent large-scale application so far. With this review, we summarize current knowledge of LOX enzymes and the way in which they can be produced and applied.  相似文献   
104.
In this study, the production of laccase by Ceriporiopsis subvermispora CZ-3 has been studied under semi solid-state conditions using natural waste as solid support materials. Different concentrations of xylidine derivatives were also investigated as inducer affecting laccase production. Melon peel having the lowest C/N ratio in comparison to other supports led to the highest activity levels, reaching maximum values of about 3000 UL−1 for C. subvermispora CZ-3 in the presence of 2,4-xylidine. Laccase produced by this fungus was partially purified by ammonium sulphate precipitation and Sephacryl S-100 HR size exclusion chromatography. Several kinetic parameters of enzyme were also determined with 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonate) as a substrate. On the other hand, several compounds were investigated with respect to mediator effect for decolourization of indigo carmine and denim bleaching by this enzyme. It was observed that most of the compounds have mediator effect for decolourization of indigo carmine whereas 1-hydroxybenzotriazol is an appropriate compound for indigo dyed denim bleaching.  相似文献   
105.
Phase shifts and the role of herbivory in the resilience of coral reefs   总被引:5,自引:4,他引:1  
Cousin Island marine reserve (Seychelles) has been an effectively protected no-take marine protected area (MPA) since 1968 and was shown in 1994 to support a healthy herbivorous fish assemblage. In 1998 Cousin Island reefs suffered extensive coral mortality following a coral bleaching event, and a phase shift from coral to algal dominance ensued. By 2005 mean coral cover was <1%, structural complexity had fallen and there had been a substantial increase in macroalgal cover, up to 40% in some areas. No clear trends were apparent in the overall numerical abundance and biomass of herbivorous fishes between 1994 and 2005, although smaller individuals became relatively scarce, most likely due to the loss of reef structure. Analysis of the feeding habits of six abundant and representative herbivorous fish species around Cousin Island in 2006 demonstrated that epilithic algae were the preferred food resource of all species and that macroalgae were avoided. Given the current dominance of macroalgae and the apparent absence of macroalgal consumers, it is suggested that the increasing abundance of macroalgae is reducing the probability of the system reverting to a coral dominated state.  相似文献   
106.
107.
Global environmental change is happening at unprecedented rates. Coral reefs are among the ecosystems most threatened by global change. For wild populations to persist, they must adapt. Knowledge shortfalls about corals' complex ecological and evolutionary dynamics, however, stymie predictions about potential adaptation to future conditions. Here, we review adaptation through the lens of quantitative genetics. We argue that coral adaptation studies can benefit greatly from “wild” quantitative genetic methods, where traits are studied in wild populations undergoing natural selection, genomic relationship matrices can replace breeding experiments, and analyses can be extended to examine genetic constraints among traits. In addition, individuals with advantageous genotypes for anticipated future conditions can be identified. Finally, genomic genotyping supports simultaneous consideration of how genetic diversity is arrayed across geographic and environmental distances, providing greater context for predictions of phenotypic evolution at a metapopulation scale.  相似文献   
108.
If we are to ensure the persistence of species in an increasingly warm world, of interest is the identification of drivers that affect the ability of an organism to resist thermal stress. Underpinning any organism's capacity for resistance is a complex interplay between biological and physical factors occurring over multiple scales. Tropical coral reefs are a unique system, in that their function is dependent upon the maintenance of a coral–algal symbiosis that is directly disrupted by increases in water temperature. A number of physical factors have been identified as affecting the biological responses of the coral organism under broadscale thermal anomalies. One such factor is water flow, which is capable of modulating both organismal metabolic functioning and thermal environments. Understanding the physiological and hydrodynamic drivers of organism response to thermal stress improves predictive capabilities and informs targeted management responses, thereby increasing the resilience of reefs into the future.  相似文献   
109.
Cross‐ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate‐related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015–2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post‐bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral‐dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community‐wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.  相似文献   
110.
Recent studies indicate poor understanding of the causes and consequences of climate change among college students. In an effort to improve climate change literacy, we have developed an authentic research experience for upper level undergraduate students focused on resolving spatial and temporal patterns of coral reef bleaching, an ecologically and economically important consequence of climate warming. In the research, students use a public archive of maps generated by the United States National Oceanographic and Atmospheric Association (NOAA) that use coloration to depict ocean areas experiencing above-average surface temperatures and where corals are at an increased risk of bleaching. Students are required to quantify the total area of coloration on individual maps using open-source image analysis software called Image J. By quantifying coloration (ie bleaching risk) over a large number of maps in a chronological sequence, students can test hypotheses regarding the relationship between ongoing climate warming and coral bleaching risk. Students are required to summarise their findings in a scientific journal-style report that incorporates graphical representations and statistical tests of their coral bleaching risk data. The research activity is cost-effective, repeatable, requires little specialised knowledge and addresses common programmatic learning outcomes that target scientific communication, quantitative reasoning and sustainability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号