首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7652篇
  免费   798篇
  国内免费   1029篇
  9479篇
  2024年   32篇
  2023年   135篇
  2022年   181篇
  2021年   217篇
  2020年   288篇
  2019年   306篇
  2018年   280篇
  2017年   322篇
  2016年   311篇
  2015年   296篇
  2014年   333篇
  2013年   524篇
  2012年   327篇
  2011年   325篇
  2010年   298篇
  2009年   347篇
  2008年   382篇
  2007年   416篇
  2006年   375篇
  2005年   315篇
  2004年   317篇
  2003年   326篇
  2002年   259篇
  2001年   253篇
  2000年   207篇
  1999年   222篇
  1998年   170篇
  1997年   194篇
  1996年   155篇
  1995年   124篇
  1994年   114篇
  1993年   117篇
  1992年   124篇
  1991年   102篇
  1990年   94篇
  1989年   87篇
  1988年   99篇
  1987年   56篇
  1986年   56篇
  1985年   75篇
  1984年   75篇
  1983年   43篇
  1982年   38篇
  1981年   38篇
  1980年   36篇
  1979年   12篇
  1978年   13篇
  1977年   17篇
  1976年   11篇
  1975年   11篇
排序方式: 共有9479条查询结果,搜索用时 15 毫秒
201.

Background and Aims

Hydration, rupture and exine opening due to the sudden and large expansion of intine are typical of taxoid-type pollen grains. A hemispheric outgrowth external to the exine was observed on Cupressus and Juniperus pollen grains before the intine swelling and exine release. However, the actual existence of this permanent or temporary structure and its precise role in pollen hydration is still being debated. The aim of this paper is to collect information on the actual presence of this peculiar outgrowth on the surface of the Cupressus pollen grain, its structure, composition and function.

Methods

Pollen grains of several Cupressus species were observed using various techniques and methodologies, under light and fluorescence microscopy, phase-contrast microscopy, confocal microscopy, scanning electron microscopy, and an environmental scanning electron microscope. Observations were also performed on other species with taxoid-type pollen grains.

Key Results

A temporary structure located just above the pore was observed on Cupressus pollen grains, as well as on other taxoid-type pollens. It is hemispheric, layered, and consists of polysaccharides and proteins. The latter are confined to its inner part. Its presence seems to regulate the entrance of water into the grains at the beginning of pollen hydration.

Conclusions

The presence of a temporary structure over the pore of taxoid-type pollen grains was confirmed and its structure was resolved using several stains and observation techniques. This structure plays a role in the first phases of pollen hydration.  相似文献   
202.
黑米稻为中国著名的珍稀稻种。黑米不仅富含的蛋白质、氨基酸、维生素以及钙、铁、锌、硒等矿物营养元素,而且还含有具重要天然色素"黑米色素"。由于黑米营养价值高于普通稻米,且富含花色甘类抗氧化色素,是现代食品行业理想的天然抗氧化剂来源。以黑糙米作为研究材料,无水乙醇作为提取溶剂,采用萃取法对黑米色素的提取工艺做了较为全面的研究。试验结果表明:以无水乙醇作为黑米色素萃取剂时,按照料液比(w/v)1∶8,萃取时间60 min,萃取温度80℃,黑米色素提取效果最佳。  相似文献   
203.
A Kolmogorov-type competition model featuring allocation profiles, gain functions, and cost parameters is examined. For plant species that compete for sunlight according to the canopy partitioning model [R.R. Vance and A.L. Nevai, Plant population growth and competition in a light gradient: a mathematical model of canopy partitioning, J. Theor. Biol. 245 (2007), pp. 210–219] the allocation profiles describe vertical leaf placement, the gain functions represent rates of leaf photosynthesis at different heights, and the cost parameters signify the energetic expense of maintaining tall stems necessary for gaining a competitive advantage in the light gradient. The allocation profiles studied here, being supported on three alternating intervals, determine “interior” and “exterior” species. When the allocation profile of the interior species is a delta function (a big leaf) then either competitive exclusion or coexistence at a single globally attracting equilibrium point occurs. However, if the allocation profile of the interior species is piecewise continuous or a weighted sum of delta functions (multiple big leaves) then multiple coexistence states may also occur.  相似文献   
204.
Platonia insignis Mart. (Clusiaceae), the bacurizeiro, is a native tree species from the Brazilian Amazon forests. Three populations of P. insignis have been observed in the north-east region of the state of Maranhão that differ in flower color: the red population that produces dark pink flowers, the pink population that produces light pink flowers, and the white population with yellowish-white flowers. From multivariate statistical analysis, we aimed at characterizing such populations using morpho-anatomical leaf and flower morphology parameters. A total of 40 P. insignis individuals have been sampled in the cities of São Luís and Chapadinha. The morphological traits varied more than the anatomical traits. Area, fresh mass, and dry mass were the leaf parameters that show more variations. Platonia insignis have hypostomatic or amphihypostomatic leaves. The length of the gynoecium+the length of the nectary, the total length and the length of gynoecium were the principal components considering flower analysis. The three populations did not show significant differences nor did they group using Ward's method. Individuals from the Chapadinha and São Luís red population have been separated according to leaf and flower morphological traits, and the morphological difference between individuals may represent early stages of geographical speciation.  相似文献   
205.
植物的水容特征与其耐旱性的关系   总被引:5,自引:0,他引:5  
在自然风晾条件下,研究了不同植物器官的相对含水量、水势及比水容之间的相互关系。结果表明:植物叶片阻止体内蒸腾失水的能力大小顺序依次为:花生(Arrachishypogaea)>甘薯(Ipomoeabatatas)>大豆(Glycinemax)>玉米(Zeamays),各植物茎的保水能力相差不大;甘薯的茎、叶在风晾4h后仍未永久凋萎,其他植物的茎、叶在风晾1~3h就出现永久凋萎;花生、甘薯、大豆和玉米叶片风晚3~4h后,其水势的下降幅度分别为:1.00,1.30,1.80和2.70mPa,花生、甘薯、大豆茎的水势下降幅度分别为:1.95,1.40和1.30mPa;植物茎、叶的水势与其相对含水量具有较好的对数关系;植株茎、叶的比水客值范围在0.0258~0.6835mPa-1之间,叶片的比水容大于茎的比水容。因此,植物的水容特征表明不同植物茎、叶的保水、释水能力不同,因而其耐旱、抗旱性不同。玉米和大豆的耐旱性小于花生、甘薯的耐旱性。  相似文献   
206.
The three major components of the maize leaf are the blade, the sheath, and at their junction, the ligular region. Each exhibits specific cell types and organization. Four dominant Liguleless (Lg) mutations (Lg3-O, Lg4-O, Lg*347, and Lg*9167) in at least three different genes cause a similar morphological phenotype in leaves, although each mutation affects a distinct domain of the blade. Mutant leaves display regions of altered cell fate in the blade, occompanied by elimination of ligule and auricle at their wild-type positions and development of ligule and auricle in the blade at the borders of the altered regions. The affected blade cells are transformed into sheath-like cells, as determined by morphological and genetic tests. Lg4-O expressivity is highly dependent on genetic background. For example, two different backgrounds may specify converse patterns of phenotypic expression. Lg4-O expressivity is also affected by the heterochronic mutation Teopod2 (Tp2). Gene dosage experiments indicate that Lg4-O is a neomorph. Interactions between recessive lg mutations (which eliminate ligular structures) and the dominant Lg mutations suggest that the lg+ genes act after the Lg mutations. Lg3-O and Lg4-O act semidominantly, and interact with each other and with other mutations in the Knotted1 (Kn1)-like family (a family in which dominant mutant alleles cause blade to sheath transformation phenotypes). These interactions suggest that the above Kn1-like mutations may function similarly in the leaf. We discuss the similarities between the Lg mutations and the other mutations of the Kn1-like family, which led us to postulate that lg3 and lg4 are members of a growing family of kn1-like (knox) homeobox genes that are identified by dominant mutant alleles causing leaf transformation phenotypes. We also propose that certain key characteristics of this family of dominant neomorphic mutations are important for generating meaningful morphological changes during evolution. © 1996 Wiley-Liss, Inc.  相似文献   
207.
Soaking the seeds of mungbean (Vigna radiata L. Wilczek cv. K-851) in pyridoxine solution significantly enhanced leaf N, P and K concentrations at different growth stages, and seed protein concentration at harvest. Leaf N, P and K were significantly correlated with root length and seed protein. Thus, pyridoxine application not only enhanced the availability of nutrients to plants but also was responsible for the maintenance of a favourable source-sink relationship, thus ensuring more nutritious seeds of mungbean.  相似文献   
208.
Morphological and physiological characteristics of leaves from plant species collected in steppe communities in the various climatic zones in Eurasia were compared. The changes in leaf structure correlated with the major climatic factors. The mean thickness of leaves increased with increasing mean temperature of July and decreasing mean precipitation, which corresponded to aridity increase. The increased leaf thickness correlated with an increase in the specific leaf weight. The content of chlorophylls (a + b) in leaves greatly varied with plant habitats, whereas the chlorophyll a/b ratio remained unchanged. The chlorophyll content in leaf tissues had a general tendency to decrease with increasing leaf thickness. The leaf chlorophyll content positively correlated (R 2 = 0.77) with the proportion of chlorenchyma in leaf tissues. It is concluded that steppe plants adapt to climate aridization at the structural level by increasing the proportion of protective heterotrophic components of the leaf without changing the functional activity of photosynthetic tissues.  相似文献   
209.
The complete nucleotide sequence of infectious cloned DNA components (A and B) of the causal agent of squash leaf curl disease in the Philippines was determined. DNA‐A and DNA‐B comprise 2739 and 2705 nucleotides, respectively; the common region is 174 bases in length. Five ORFs were found in DNA‐A and two in DNA‐B. Partial dimeric clones containing DNA‐A and DNA‐B, constructed in a binary vector and transformed into Agrobacterium tumefaciens, induced systemic infection in agro‐inoculated pumpkin plants (Cucurbita moschata). The total DNA‐A sequence was most closely related to that of Squash leaf curl China virus (SLCCNV) (88% identity), although the existence of B component of SLCCNV has not been reported. The deduced coat protein was like that of SLCCNV (98% amino acid sequence identity) and the Philippines virus has low sequence identity to Squash leaf curl virus (SLCV) and Squash mild leaf curl virus (SMLCV) (63 and 64% total nucleotide sequence identities, respectively). From these results, we propose that the Philippines virus be designated Squash leaf curl China virus‐[Philippines] (SLCCNV‐[PH]).  相似文献   
210.
Abstract 1 The antennally active nonhost bark volatiles (NHVs): trans‐conophthorin (tC), C6‐alcohols (green leaf volatiles; GLVs) and C8‐alcohols, were tested for their ability to reduce attraction of the spruce bark beetle Ips typographus (L) (Col. Scolytidae) to its pheromone sources in both laboratory walking bioassy and field trapping experiments. 2 In the walking bioassay with I. typographus females, individual NHVs such as tC, 3‐octanol and 1‐octen‐3‐ol, and the unsuitable host signal, verbenone (Vn), were inactive at the doses tested. However, the blend of C6‐alcohols (3GLVs) and all the binary, ternary, or quarternary blends significantly reduced the female attraction to the pheromone sources. 3 In the field trapping experiments, individual NHV signals (tC, C6‐alcohols and C8‐alcohols) all reduced catch of I. typographus in pheromone‐baited traps, with their inhibitory effects similar to that of the known inhibitor, Vn. The binary, ternary or quarternary combinations of these NHV signals or Vn, all caused significantly stronger reductions in trap catches than the individual signals. The blends showed similar levels of interruption, except the binary blend of C8‐alcohols (2C8OH) and Vn. 4 Difference in trapping mechanism between pipe traps (attraction and landing) and Lindgren funnel traps (attraction) did not affect the pattern of inhibition of these active NHV signals and Vn. 5 These behaviourally active nonhost volatiles and Vn might be used effectively to protect spruce trees or stands against attacks by I. typographus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号