首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7643篇
  免费   804篇
  国内免费   1013篇
  2024年   25篇
  2023年   134篇
  2022年   172篇
  2021年   217篇
  2020年   286篇
  2019年   306篇
  2018年   280篇
  2017年   322篇
  2016年   311篇
  2015年   296篇
  2014年   333篇
  2013年   524篇
  2012年   327篇
  2011年   325篇
  2010年   298篇
  2009年   347篇
  2008年   382篇
  2007年   416篇
  2006年   375篇
  2005年   315篇
  2004年   317篇
  2003年   326篇
  2002年   259篇
  2001年   253篇
  2000年   207篇
  1999年   222篇
  1998年   170篇
  1997年   194篇
  1996年   155篇
  1995年   124篇
  1994年   114篇
  1993年   117篇
  1992年   124篇
  1991年   102篇
  1990年   94篇
  1989年   87篇
  1988年   99篇
  1987年   56篇
  1986年   56篇
  1985年   75篇
  1984年   75篇
  1983年   43篇
  1982年   38篇
  1981年   38篇
  1980年   36篇
  1979年   12篇
  1978年   13篇
  1977年   17篇
  1976年   11篇
  1975年   11篇
排序方式: 共有9460条查询结果,搜索用时 15 毫秒
171.
Most previous studies of evolutionary modification of form in plants have focused primarily on individual organs or flowers. Few have investigated the role of evolutionary changes in timing or position at the level of whole plant ontogeny. This study compares ontogenies of the primary shoots of two subspecies of Cucurbita argyrosperma, one a cultivar and the other its wild progenitor. Differences in flowering times between these subspecies suggested that the cultivar may have evolved from the wild subspecies via heterochronic processes leading to paedomorphosis. Analyses showed that both subspecies are similar in vegetative architecture and rates of leaf production. Earlier flowering in the cultivar, both in terms of position and absolute time, appears to have arisen through progenesis. Initial observations of leaf blade morphology led to the hypothesis that paedomorphosis and gigantism also may have been involved in the evolution of leaf blade shape in the cultivar: all leaves of the cultivar are larger and visually similar in shape to early leaves of the wild subspecies. However, quantitative analysis revealed that leaves of the cultivar are neither geometrically, nor solely allometrically larger versions of early leaves of the progenitor. Leaf shape in the cultivar exhibits novel features as well as effects of allometry shared with the progenitor, hence a simple hypothesis of paedomorphic evolution of leaf shape is not supported.  相似文献   
172.
Vertebrate fossils from many different formations fluoresce when exposed to ultraviolet (UV) light. In this paper field observations and controlled experiments in the Chadron Formation (White River Group, late Eocene) of Wyoming are used to assess the utility of searching for fossils at night using ultraviolet light. The results indicate that, especially for very small teeth and egg-shell fragments, searching with ultraviolet light at night can result in significantly more specimens than searching during daylight hours. This method has the potential to increase sample sizes for small vertebrate specimens that are often overlooked when using standard collecting techniques.  相似文献   
173.
Abstract 1 Willows are frequently attacked and defoliated by adult leaf beetles (Phratora vulgatissima L.) early in the season and the plants are then attacked again when new larvae emerge. The native willow Salix cinerea has previously been shown to respond to adult grazing by producing new leaves with an increased trichome density. Subsequent larval feeding was reduced on new leaves. This type of induced plant response may reduce insect damage and could potentially be utilized for plant protection in agricultural systems. 2 Here, we investigated if the willow species most commonly used for biomass production in short rotation coppice, Salix viminalis, also responds to adult beetle grazing by increasing trichome density. Larval performance and feeding behaviour on plants previously exposed to adult beetles was compared with that on undefoliated control plants in a greenhouse. 3 We found an overall decrease in trichome density within all the plants (i.e. trichome density was lower on new leaves compared to that for older basal leaves on S. viminalis). However, leaves of beetle defoliated plants had a higher trichome density compared to control plants. Larval growth and feeding was not affected by this difference between treatments. Larvae appeared to remove trichomes when feeding on S. viminalis, a behaviour that might explain the lack of difference between treatments.  相似文献   
174.
Phenolic compounds were present in greater amounts in non‐infected petioles of genotypes of Hevea brasiliensis that are resistant to Phytophthora leaf disease than in genotypes that are susceptible. Phenolic compounds extracted from petioles of either susceptible (PB86) or resistant (RRIC100) genotypes, before or after infection with Phytophthora meadii, had anti‐fungal properties. Artificially infected petioles of PB86 had phenolic acids, triterpenoids or flavonoids, whereas healthy petioles contained only triterpenoids or flavonoids. However, healthy or infected petioles of RRIC100 contained only trace amounts of the above compounds and of vanillin (3‐methoxy‐4‐hydroxybenzaldehyde). Vanillin and umbelliferone (7‐hydroxycoumarin) were shown to suppress zoospore germination of P. meadii on glass slides and to inhibit its growth in pea broth and V‐8 juice agar. Vanillin was slightly more active than umbelliferone. Resistance of RRIC100 to Phytophthora was suspected as being related to the polymerisation of phenolic compounds to form lignin, which may suppress further spread of the pathogen's mycelium into healthy tissues. Formation of lignin from phenolic aldehydes as a barrier to disease spread may be a critical factor in resistance.  相似文献   
175.
Horacio Paz 《Biotropica》2003,35(3):318-332
I analyzed patterns of variation in root mass allocation and root morphology among seedlings of woody species in relation to environmental factors in four Neotropical forests. Among forests, I explored the response of root traits to sites varying in water or nutrient availability. Within each forest, I explored the plastic response of species to different microhabitats: gaps and understory. Additionally, I explored evidence for life history correlation of root and shoot traits by comparing species differing in their successional group (light‐demanding [22 spp.] or shade tolerant [27 spp.]) and germination type (species with photosynthetic cotyledons or species with reserve cotyledons). At each forest site, young seedlings from 10 to 20 species were excavated. A total of 55 species was collected in understory conditions and 31 of them were also collected in gaps. From each seedling, six morphological ratios were determined. Allocation to roots was higher in forest sites with the lowest soil resources. Roots were finer and longer in the most infertile site, while roots were deeper in the site with the longest dry season. Seedling traits did not differ between germination types. Shade tolerant species allocated more to roots and developed thicker roots than light‐demanding species. Light‐demanding species showed stronger plastic responses to habitat than shade tolerant species, and species with photo‐synthetic cotyledons showed lower plasticity than species with reserve cotyledons. Overall, these results suggest that among Neotropical species, root allocation and root morphology of seedlings reflect plant adjustments to water or nutrient availability at geographic and microhabitat scales. In addition, life history specialization to light environments is suggested by differences among groups of species in their allocation to roots and in their root morphology.  相似文献   
176.
升流厌氧污泥层反应器动力学模型   总被引:1,自引:0,他引:1  
用碘离子作示踪剂,采用矩形脉冲示踪法测定升流厌氧污泥层(UASB)反应器的流动分布。建立了申级返混加沟流模型。模型简单,能够反映反应器流动分布,具有较强的拟合能力和良好的适用性。运用流动模型和Monod方程,建立了UASB反应器稳态模型,并对模型参数进行了估计。通过灵敏度分析,进水基质浓度S。,废水流量Q,最大比基质降解速率,μmax 对出水基质浓度有较大影响。在稳态模型的基础上又建立了UASB反应器动态模态,利用此模型,对出水基质浓度序列Se,和产气量序列Qg进行计算预测,平均偏差分别5.40%和7.46%,标准偏差分别为7.02%和9.66%。  相似文献   
177.
A model of the daily carbon balance of a black spruce/feathermoss boreal forest ecosystem was developed and results compared to preliminary data from the 1994 BOREAS field campaign in northem Manitoba, Canada. The model, driven by daily weather conditions, simulated daily soil climate status (temperature and moisture profiles), spruce photosynthesis and respiration, moss photosynthesis and respiration, and litter decomposition. Model agreement with preliminary field data was good for net ecosystem exchange (NEE), capturing both the asymmetrical seasonality and short-term variability. During the growing season simulated daily NEE ranged from -4 g C m-2 d-1 (carbon uptake by ecosystem) to + 2 g C m-2 d-1 (carbon flux to atmosphere), with fluctuations from day to day. In the early winter simulated NEE values were + 0.5 g C m-2 d-1, dropping to + 0.2 g C m-2 d-1 in mid-winter. Simulated soil respiration during the growing season (+ 1 to + 5 g C m-2 d-1) was dominated by metabolic respiration of the live moss, with litter decomposition usually contributing less than 30% and live spruce root respiration less than 10% of the total. Both spruce and moss net primary productivity (NPP) rates were higher in early summer than late summer. Simulated annual NEE for 1994 was -51 g C m-2 y-1, with 83% going into tree growth and 17% into the soil carbon accumulation. Moss NPP (58 g C m-2 y-1) was considered to be litter (i.e. soil carbon input; no net increase in live moss biomass). Ecosystem respiration during the snow-covered season (84 g C m-2) was 58% of the growing season net carbon uptake. A simulation of the same site for 1968–1989 showed = 10–20% year-to-year variability in heterotrophic respiration (mean of + 113 g C m-2 y-1). Moss NPP ranged from 19 to 114 g C m-2 y-1; spruce NPP from 81 to 150 g C m-2 y-1; spruce growth (NPP minus litterfall) from 34 to 103 g C m-2 y-1; NEE ranged from +37 to -142 g C m-2 y-1. Values for these carbon balance terms in 1994 were slightly smaller than the 1969–89 means. Higher ecosystem productivity years (more negative NEE) generally had early springs and relatively wet summers; lower productivity years had late springs and relatively dry summers.  相似文献   
178.
System-level adjustments to elevated CO2 in model spruce ecosystems   总被引:6,自引:0,他引:6  
Atmospheric carbon dioxide enrichment and increasing nitrogen deposition are often predicted to increase forest productivity based on currently available data for isolated forest tree seedlings or their leaves. However, it is highly uncertain whether such seedling responses will scale to the stand level. Therefore, we studied the effects of increasing CO2 (280, 420 and 560 μL L-1) and increasing rates of wet N deposition (0, 30 and 90 kg ha-1 y-1) on whole stands of 4-year-old spruce trees (Picea abies). One tree from each of six clones, together with two herbaceous understory species, were established in each of nine 0.7 m2 model ecosystems in nutrient poor forest soil and grown in a simulated montane climate for two years. Shoot level light-saturated net photosynthesis measured at growth CO2 concentrations increased with increasing CO2, as well as with increasing N deposition. However, predawn shoot respiration was unaffected by treatments. When measured at a common CO2 concentration of 420 μL L-1 37% down-regulation of photosynthesis was observed in plants grown at 560 μL CO2 L-1. Length growth of shoots and stem diameter were not affected by CO2 or N deposition. Bud burst was delayed, leaf area index (LAI) was lower, needle litter fall increased and soil CO2 efflux increased with increasing CO2. N deposition had no effect on these traits. At the ecosystem level the rate of net CO2 exchange was not significantly different between CO2 and N treatments. Most of the responses to CO2 studied here were nonlinear with the most significant differences between 280 and 420 μL CO2 L-1 and relatively small changes between 420 and 560 μL CO2 L-1. Our results suggest that the lack of above-ground growth responses to elevated CO2 is due to the combined effects of physiological down-regulation of photosynthesis at the leaf level, allometric adjustment at the canopy level (reduced LAI), and increasing strength of below-ground carbon sinks. The non-linearity of treatment effects further suggests that major responses of coniferous forests to atmospheric CO2 enrichment might already be under way and that future responses may be comparatively smaller.  相似文献   
179.
应用离体叶片法,对9个棉花种质进行了鉴定,试验结果表明;种质间抗生性和忌避性差异显著;同株棉花不同部位的叶片对朱砂叶螨的抗生性无显著性差异。通过对叶螨在不同棉花种质上种群增长动态进行系统聚类,可将9个棉花种质划分为3类:斯字棉825-91、杞县86789、鄂棉314、苏联8911为1类,中棉164、潼南接龙棉、新库861517-2、南农NAC90-2为1类,美棉7-15独立为1类。依据朱砂叶螨在不同种质上的种群增长曲线和高峰期螨量增长倍数,可将9个种质划分为3个类型;斯字棉825-91、新库861517-2为抗性类型,潼南接龙棉、美棉7-15、南农NAC90-2为感性类型,其余为中抗类型。从忌避性看:斯字棉825-91、美棉7-15表现出较高的忌避性。  相似文献   
180.
Binding protein (BiP) is a widely distributed and highly conserved endoplasmic-reticulum luminal protein that has been implicated in cotranslational folding of nascent polypeptides, and in the recognition and disposal of misfolded polypeptides. Analysis of cDNA sequences and genomic blots indicates that soybeans (Glycine max L. Merr.) possess a small gene family encoding BiP. The deduced sequence of BiP is very similar to that of other plant BiPs. We have examined the expression of BiP in several different terminally differentiated soybean organs including leaves, pods and seed cotyledons. Expression of BiP mRNA increases during leaf expansion while levels of BiP protein decrease. Leaf BiP mRNA is subject to temporal control, exhibiting a large difference in expression in a few hours between dusk and night. The expression of BiP mRNA varies in direct correlation with accumulation of seed storage proteins. The hybridization suggests that maturing-seed BiP is likely to be a different isoform from vegetative BiPs. Levels of BiP protein in maturing seeds vary with BiP mRNA. High levels of BiP mRNA are detected after 3 d of seedling growth. Little change in either BiP mRNA or protein levels was detected in maturing soybean pods, although BiP-protein levels decrease in fully mature pods. Persistent wounding of leaves by whiteflies induces massive overexpression of BiP mRNA while only slightly increasing BiP-protein levels. In contrast single-event puncture wounding only slightly induces additional BiP expression above the temporal variations. These observations indicate that BiP is not constitutively expressed in terminally differentiated plant organs. Expression of BiP is highest during the developmental stages of leaves, pods and seeds when their constituent cells are producing seed or vegetative storage proteins, and appears to be subject to complex regulation, including developmental, temporal and wounding.The mention of vendor or product does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over vendors of similar products not mentioned.Abbreviations BiP binding protein The sequences reported in this paper have been submitted to Gen-Bank and are identified with the accession numbers BiP-A (U08384), BiP-B (U08383), BiP-C (U08382) and -1,3 glucanase (U08405).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号