首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1092篇
  免费   143篇
  国内免费   77篇
  2024年   6篇
  2023年   28篇
  2022年   27篇
  2021年   39篇
  2020年   49篇
  2019年   79篇
  2018年   59篇
  2017年   60篇
  2016年   56篇
  2015年   57篇
  2014年   65篇
  2013年   78篇
  2012年   64篇
  2011年   58篇
  2010年   47篇
  2009年   58篇
  2008年   74篇
  2007年   67篇
  2006年   60篇
  2005年   41篇
  2004年   40篇
  2003年   19篇
  2002年   20篇
  2001年   30篇
  2000年   19篇
  1999年   21篇
  1998年   13篇
  1997年   15篇
  1996年   13篇
  1995年   7篇
  1994年   14篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   2篇
  1989年   4篇
  1988年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1312条查询结果,搜索用时 15 毫秒
51.
Some of the most varied colors in the natural world are created by iridescent nanostructures in bird feathers, formed by layers of melanin‐containing melanosomes. The morphology of melanosomes in iridescent feathers is known to vary, but the extent of this diversity, and when it evolved, is unknown. We use scanning electron microscopy to quantify the diversity of melanosome morphology in iridescent feathers from 97 extant bird species, covering 11 orders. In addition, we assess melanosome morphology in two Eocene birds, which are the stem lineages of groups that respectively exhibit hollow and flat melanosomes today. We find that iridescent feathers contain the most varied melanosome morphologies of all types of bird coloration sampled to date. Using our extended dataset, we predict iridescence in an early Eocene trogon (cf. Primotrogon) but not in the early Eocene swift Scaniacypselus, and neither exhibit the derived melanosome morphologies seen in their modern relatives. Our findings confirm that iridescence is a labile trait that has evolved convergently in several lineages extending down to paravian theropods. The dataset provides a framework to detect iridescence with more confidence in fossil taxa based on melanosome morphology.  相似文献   
52.
Species extinctions caused by the destruction and degradation of tropical primary forest may be at least partially mitigated by the expansion of regenerating secondary forest. However, the conservation value of secondary forest remains controversial, and potentially underestimated, since most previous studies have focused on young, single‐aged, or isolated stands. Here, we use point‐count surveys to compare tropical forest bird communities in 20–120‐year‐old secondary forest with primary forest stands in central Panama, with varying connectivity between secondary forest sites and extensive primary forest. We found that species richness and other metrics of ecological diversity, as well as the combined population density of all birds, reached a peak in younger (20‐year‐old) secondary forests and appeared to decline in older secondary forest stands. This counter‐intuitive result can be explained by the greater connectivity between younger secondary forests and extensive primary forests at our study site, compared with older secondary forests that are either (a) more isolated or (b) connected to primary forests that are themselves small and isolated. Our results suggest that connectivity with extensive primary forest is a more important determinant of avian species richness and community structure than forest age, and highlight the vital contribution secondary forests can make in conserving tropical bird diversity, so long as extensive primary habitats are adjacent and spatially connected.Abstract in Spanish is available with online material.  相似文献   
53.
The aerosphere is utilized by billions of birds, moving for different reasons and from short to great distances spanning tens of thousands of kilometres. The aerosphere, however, is also utilized by aviation which leads to increasing conflicts in and around airfields as well as en‐route. Collisions between birds and aircraft cost billions of euros annually and, in some cases, result in the loss of human lives. Simultaneously, aviation has diverse negative impacts on wildlife. During avian migration, due to the sheer numbers of birds in the air, the risk of bird strikes becomes particularly acute for low‐flying aircraft, especially during military training flights. Over the last few decades, air forces across Europe and the Middle East have been developing solutions that integrate ecological research and aviation policy to reduce mutual negative interactions between birds and aircraft. In this paper we 1) provide a brief overview of the systems currently used in military aviation to monitor bird migration movements in the aerosphere, 2) provide a brief overview of the impact of bird strikes on military low‐level operations, and 3) estimate the effectiveness of migration monitoring systems in bird strike avoidance. We compare systems from the Netherlands, Belgium, Germany, Poland and Israel, which are all areas that Palearctic migrants cross twice a year in huge numbers. We show that the en‐route bird strikes have decreased considerably in countries where avoidance systems have been implemented, and that consequently bird strikes are on average 45% less frequent in countries with implemented avoidance systems in place. We conclude by showing the roles of operational weather radar networks, forecast models and international and interdisciplinary collaboration to create safer skies for aviation and birds.  相似文献   
54.
The use of radio frequency identification (RFID) technology is common in animal‐monitoring applications in the wild and in zoological and agricultural settings. RFID is used to track animals and to collect information about movements and other behaviors, as well as to automate or improve husbandry. Disney's Animal Kingdom® uses passive RFID technology to monitor nest usage by a breeding colony of northern carmine bee‐eaters. We implemented RFID technologies in various equipment configurations, initially deploying low‐frequency (LF) 125 kHz RFID and later changing to high‐frequency (HF) 13.56 MHz RFID technology, to monitor breeding behavior in the flock. We installed antennas connected to RFID readers at the entrances of nest tunnels to detect RFID transponders attached to leg bands as birds entered and exited tunnels. Both LF‐RFID and HF‐RFID systems allowed the characterization of nest visitation, including the timing of nest activity, breeding pair formation, identification of egg‐laying females, participation by nonresidents, and detection of nest disruptions. However, we collected a substantially larger volume of data using the increased bandwidth and polling speed inherent with HF‐RFID, which permitted tag capture of multiple birds simultaneously and resulted in fewer missed nest visits in comparison to LF‐RFID. Herein, we describe the evolution of the RFID setups used to monitor nest usage for more than 7 years, the types of data that can be gained using RFID at nests, and how we used these data to gain insights into carmine bee‐eater breeding behavior and improve husbandry.  相似文献   
55.
Genomic data are important for understanding the origin and evolution of traits. Under the context of rapidly developing of sequencing technologies and more widely available genome sequences, researchers are able to study evolutionary mechanisms of traits via comparative genomic methods. Compared with other vertebrates, bird genomes are relatively small and exhibit conserved synteny with few repetitive elements, which makes them suitable for evolutionary studies. Increasing genomic progress has been reported on the evolution of powered flight, body size variation, beak morphology, plumage colouration, high-elevation colonization, migration, and vocalization. By summarizing previous studies, we demonstrate the genetic bases of trait evolution, highlighting the roles of small-scale sequence variation, genomic structural variation, and changes in gene interaction networks. We suggest that future studies should focus on improving the quality of reference genomes, exploring the evolution of regulatory elements and networks, and combining genomic data with morphological, ecological, behavioural, and developmental biology data.  相似文献   
56.
ABSTRACT The use of aural surveys to estimate population parameters is widespread in avian studies. Despite efforts to increase the efficacy of this method, the potential for ecological context to bias population estimates remains largely unexplored. For example, food availability and nest predation risk can influence singing activity independent of density and, therefore, may bias aural estimates where these ecological factors vary systematically among habitats or other categories of ecological interest. We used a natural fire event in a mixed‐conifer forest that experienced variation in fire severity (low, intermediate, and high) to determine if aural surveys produce accurate density estimates of Dark‐eyed Juncos ( Junco hyemalis) independent of ecological context. During the first 2‐yr postfire, we censused junco populations in each burn type with intensive spot‐mapping and nest searching, locating 168 nests. Simultaneously, we conducted fixed‐radius point‐count surveys and estimated food availability and nest predation risk in each burn type to test whether ecological context may influence aural detection probability independent of actual density. We found no difference in nesting densities among patches burned at different severity. Arthropod food availability was inversely related to fire severity during the first postfire breeding season, but increased to higher levels across all severities during the second. In both years, aural detections were significantly greater in intermediate severity patches that consistently represented the habitat with the lowest nest predation risk. These results suggest that nest predation risk may significantly bias aural estimates of avian populations. Although traditional aural survey methods such as the Breeding Bird Survey measure habitat attributes, our findings highlight the difficulty in assessing relevant covariates in estimates of avian population. Future research must consider the potential for nest predation and other ecological factors to drive interannual or interhabitat variation in avian population estimates independent of true changes in population size.  相似文献   
57.
58.
Zusammenfassung Vögel schließen ihre Augen im Schlaf in einer für die großen Taxa typischen Weise. Entweder geht das Unterlid hoch wie bei der Mehrzahl der Arten, oder das Oberlid bewegt sich abwärts (Psittaciformes, Trochili), oder aber beide Lider schließen die Lidspalte (Strigiformes, Caprimulgi). Solche Kenntnis fehlt von den meisten Ordnungen, oder die Handbücher geben falsche oder widersprüchliche Information. Neben dem tonischen, schlafbegleitenden Augenschluss bewegen Vögel im Wachzustand eines oder beide Lider phasisch und meist schnell. Dieser häufige Lidschlag ist durch ein anderes Bewegungsmuster und durch eine andere Funktion gekennzeichnet. Photodokumente und genaue Beobachtungen führen erstmals zu einer funktionellen Deutung, der zufolge der Lidschlag das Auge mechanisch schützt. Droht dem Auge von vorn oder von oben eine potentielle Schädigung, so schließt das Oberlid bei Tauben, Eulen und Singvögeln, im Sprühwasser gleichzeitig auch das Unterlid (Cinclus). Der unabweisbarste Beleg stammt aus dem Vergleich des Aufpickens dorniger, sperriger Beuteinsekten mit Oberlidschluss gegenüber dem Aufnehmen harmloser Beeren ohne jede Lidbewegung (Gallicolumba). Weiter ist die Antwort des Oberlids, anders als beim Unterlid, öfter seitengerecht reizorientiert, so dass die Bewegung einseitig sein kann. Zudem kann der Schluss des Oberlids auch bei stationärem (Feind-)reiz seitenweise alternieren (Otus). Ausnahmsweise tritt eine adaptive Asymmetrie auch während kurzer Zeiten der Augenöffnung zum Spähen nach Feinden im Schlaf auf, und zwar hier beim Unterlid der bedrohten Seite (Anas).Eine neue Funktion wird auch dem Schlag der Nickhaut (Membrana nictitans) zugeschrieben. Traditionell als die Cornea reinhaltendes Organ gesehen, dient auch sie dem mechanischen Schutz des Auges. Auch sie kann seitenrichtig reizorientiert schlagen, doch ist hierüber wenig bekannt. Dieselben Reize, die den Lidschlag auslösen, können bei anderen Arten die Nickhaut schlagen lassen. Ihre Schlagrate ist schwierig zu messen, da viele Schläge (nur?) mit denen des Oberlides zusammenfallen und so verborgen bleiben (Otus). Diese Synchronie ist mit keiner der bisher vorgeschlagenen Funktionen erklärbar, ebenso wenig wie die verborgenen Schläge bei tonischem Augenschluss (Passer).Die Annahme einer Ausschaltung störender Sinnesinformation, z.B. während rascher Kopfbewegungen, durch die Nickhaut lässt sich aus vier Gründen verwerfen. Die Zunahme der Schlagrate während des Feindalarms (Ficedula) bleibt funktionell unerklärt.In einer bei Vögeln einzigartigen Weise schützt der Samtkleiber (Sitta azurea) sein Auge durch Zusammenziehen des nackten Augenrings (Lidblende), wenn er rücklings an der Unterseite von Ästen nahrungssuchend einem ständigen Regen von losgelösten Rindenteilchen u. ä. ausgesetzt ist.Sekundär haben sich die Bewegungen eines oder beider Lider oder aber der Nickhaut zu optischen Signalen entwickelt, und zwar durch kontrastierende Feder- oder Nickhautfärbung. Die betreffenden blitzschnell aufleuchtenden Signale sind an den Paarpartner (Cinclus, Corvidae,Cepphus), an mögliche Feinde (Anas) oder an bisher unbekannte Empfänger gesichtet (Ficedula).
On how birds protect their eyes: division of labour between the upper lid, lower lid and the nictitating membrane
Summary Birds close their eyes during sleep in various taxon-specific ways. Either the lower lid moves up as in the majority of species including the Anseres, Accipitres, Falconiformes, Galli, Charadrioidea, Columbiformes, and Oscines; or the upper lid moves down (Psittaciformes, Trochili), or both lids close the eye as in Strigiformes and Caprimulgi. Such information is absent for most orders, or the handbooks provide wrong or conflicting information. Beside the tonic, sleep-related eye closure, birds move one or both lids in a phasic, usually swift mode when awake. These frequent lid movements are typified by their different co-ordination and function. Photographic and observational evidence strongly suggests mechanical protection of the eye as a novel function (where this had not been proposed previously). When an impact from any object is imminent from in front of or above the head, the upper lid shuts in pigeons, owls and oscines, and with water splashing, the lower lid as well (Cinclus). The most convincing evidence for mechanical protection comes from the deployment of the upper lid during the picking up of spiny insect prey as compared to easy-to-swallow berries, when both lids stay at rest (Gallicolumba).Further, the response of the upper lid is more stimulus-oriented so that both upper lids move asymmetrically. But there is also a unilateral, alternating winking of the upper lids when causative (predator) stimuli remain stationary. This never occurs with the lower lids (Otus). As an exception, an adaptive asymmetry occurs during brief phases of unilateral scanning interrupting sleep, designed to detect approaching predators. This scanning involves the lower lid (Anas).A new function is also attributed to the beating of the nictitating membrane (Membrana nictitans). Traditionally viewed as a cleaning device it also serves to protect the eye from mechanical impact, and it also can be tuned to the side from where danger is threatening, though by and large there is a dearth of information from avian taxa. The non-visually elicited action of the membrane seems always to be bilateral (Falco, Harpia). The very stimuli eliciting the blinking of a lid can, in different species, trigger the beat of the membrane, and can cause it to move tonically (Falco). The membrane beats at a rate difficult to measure since many of its beats coincide with the blinking of the upper lid and thus remain hidden (Otus). This coincidence is difficult to account for by any function discussed so far, as are the many hidden beats during tonic eye closure with the lids (Passer).The hypothesis according to which the action of the membrane is filtering out undesirable retinal stimulation during e.g. rapid head movements is dismissed on four different grounds. The increase of the membrane activity during predator alarm (Ficedula) is functionally unaccounted for.In a fashion unique among birds, the Blue Nuthatch (Sitta azurea) protects its eyes by contracting the naked skin surrounding the eye, thereby minimizing the exposure of the cornea; during foraging along the underside of branches, a continual rain of bark particles and debris jeopardizes unimpeded vision.Secondarily, one or both lids or the nictitating membrane have taken on the function of optic signals by virtue of contrasting feather colour or coloration. The phasic (flashing) signal movements involved are directed at the pair mate (Cinclus, Corvidae,Cepphus), predators (Anas) or at unknown parties (Ficedula).
Dies ist Veröffentlichung Nr. 29 des Philippine Endemic Species Conservation Project der Zoologischen Gesellschaft Frankfurt.  相似文献   
59.
I used a simple mathematical model of the inverse dynamics of locomotion to estimate the minimum muscle masses required to maintain quasi-static equilibrium about the four main limb joints at mid-stance of fast running. Models of 10 extant taxa (a human, a kangaroo, two lizards, an alligator, and five birds) were analyzed in various bipedal poses to examine how anatomy, size, limb orientation, and other model parameters influence running ability. I examined how the muscle masses required for fast running compare to the muscle masses that are actually able to exert moments about the hip, knee, ankle, and toe joints, to see how support ability varies across the limb. I discuss the assumptions and limitations of the models, using sensitivity analysis to see how widely the results differed with feasible parameter input values. Even with a wide range of input values, the models validated the analysis procedure. Animals that are known to run bipedally were calculated as able to preserve quasi-static equilibrium about their hindlimb joints at mid-stance, whereas non-bipedal runners (iguanas and alligators) were recognized as having too little muscle mass to run quickly in bipedal poses. Thus, this modeling approach should be reliable for reconstructing running ability in extinct bipeds such as nonavian dinosaurs. The models also elucidated how key features are important for bipedal running capacity, such as limb orientation, muscle moment arms, muscle fascicle lengths, and body size. None of the animals modeled had extensor muscle masses acting about any one joint that were 7% or more of their body mass, which provides a reasonable limit for how much muscle mass is normally apportioned within a limb to act about a particular joint. The models consistently showed that a key biomechanical limit on running ability is the capacity of ankle extensors to generate sufficiently large joint moments. Additionally, the analysis reveals how large ratite birds remain excellent runners despite their larger size; they have apomorphically large extensor muscles with relatively high effective mechanical advantage. Finally, I reconstructed the evolution of running ability in the clade Reptilia, showing that the ancestors of extant birds likely were quite capable runners, even though they had already reduced key hip extensors such as M. caudofemoralis longus.  相似文献   
60.
The major histocompatibility complex (MHC) genes are extremely polymorphic and this variation is assumed to be maintained by balancing selection. Cyclic interactions between pathogens and their hosts could generate such selection, and specific MHC alleles or heterozygosity at certain MHC loci have been shown to confer resistance against particular pathogens. Here we compare the temporal variation in allele frequencies of 23 MHC class I alleles with that of 23 neutral microsatellite markers in adult great reed warblers (a passerine bird) in nine successive cohorts. Overall, the MHC alleles showed a significantly higher variation in allele frequencies between cohorts than the microsatellite alleles, using a multi-variate genetic analysis (amova). The frequency of two specific MHC alleles, A3e (P = 0.046) and B4b (P = 0.0018), varied more between cohorts than expected from random, whereas none of the microsatellite alleles showed fluctuations exceeding the expectation from stochastic variation. These results imply that the variation in MHC allele frequencies between cohorts is not a result of demographic events, but rather an effect of selection favouring different MHC alleles in different years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号