首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455篇
  免费   19篇
  国内免费   17篇
  491篇
  2023年   3篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   11篇
  2015年   19篇
  2014年   23篇
  2013年   40篇
  2012年   6篇
  2011年   16篇
  2010年   15篇
  2009年   25篇
  2008年   33篇
  2007年   28篇
  2006年   23篇
  2005年   22篇
  2004年   15篇
  2003年   12篇
  2002年   15篇
  2001年   13篇
  2000年   20篇
  1999年   20篇
  1998年   9篇
  1997年   11篇
  1996年   5篇
  1995年   8篇
  1994年   8篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1975年   1篇
  1974年   3篇
排序方式: 共有491条查询结果,搜索用时 11 毫秒
71.
Induction of cytochrome P4501A (CYP1A) in fish is an important biomarker in marine monitoring programmes but a number of factors complicate interpretation of data based on catalytic activity. To provide additional analytical tools, we have cloned and sequenced entire (dab) and partial cDNAs (flounder, turbot, sand eel) from several fish species. A detailed analysis comparing the new sequences to those on the database (13 sequences) is presented and identifies an invariant, teleost-specific sequence (195-IVVSVANVICGMCFGRRYDH-214) which might be the basis for production of a species cross-reactive antibody. Northern and slot blots of fish RNA (sand eel, plaice, turbot, flounder and dab) showed extensive cross-species hybridisation with each of the cDNAs (sand eel, plaice, turbot, flounder and dab). The exception was turbot RNA, which only gave adequate hybridisation when the turbot probe was used. Attempts to normalise the hybridisation data to GAPDH mRNA were not satisfactory since there were significant species differences in expression of this gene and expression was suppressed (20–40%) by β-naphthoflavone treatment. The CYP1A probes indicated induction levels relative to untreated dab of: plaice (five-fold); turbot (12-fold); flounder (12-fold); and dab (10-fold). The study demonstrates the relative ease with which species-specific molecular probes can be generated and used.  相似文献   
72.
The mechanism of ω-6 polyunsaturated fatty acid oxidation by wild-type cyclooxygenase 2 and the Y334F variant, lacking a conserved hydrogen bond to the catalytic tyrosyl radical/tyrosine, was examined for the first time under physiologically relevant conditions. The enzymes show apparent bimolecular rate constants and deuterium kinetic isotope effects that increase in proportion to co-substrate concentrations before converging to limiting values. The trends exclude multiple dioxygenase mechanisms as well as the proposal that initial hydrogen atom abstraction from the fatty acid is the first irreversible step in catalysis. Temperature dependent kinetic studies reinforce the novel finding that hydrogen transfer from the reduced catalytic tyrosine to a terminal peroxyl radical is the first irreversible step that controls regio- and stereospecific product formation.  相似文献   
73.
Pseudomonas fluorescens IP01 grown on isopropylbenzene (cumene) and Acinetobacter sp. 20B grown on dimethyl sulfide (DMS) degraded up to 90% and 25% of 1.5 mg trichloroethylene (TCE)/l, respectively. Escherichia coli harboring the DMS monooxygenase genes from strain 20B, the cumene dioxygenase genes from strain IP01 and both oxygenase genes, degraded up to 50%, 75% and 88% of 75 mg TCE/l, respectively. The growth rates of the E. coli recombinants remained nearly unaffected by TCE at 15 150 mg/l. Thus, the E. coli recombinants were indicated to degrade high concentrations of TCE efficiently at least up to 150 mg l–1.  相似文献   
74.
Phthalate, a plasticizer, endocrine disruptor, and potential carcinogen, is degraded by a variety of bacteria. This degradation is initiated by phthalate dioxygenase (PDO), a Rieske oxygenase (RO) that catalyzes the dihydroxylation of phthalate to a dihydrodiol. PDO has long served as a model for understanding ROs despite a lack of structural data. Here we purified PDOKF1 from Comamonas testosteroni KF1 and found that it had an apparent kcat/Km for phthalate of 0.58 ± 0.09 μM−1s−1, over 25-fold greater than for terephthalate. The crystal structure of the enzyme at 2.1 Å resolution revealed that it is a hexamer comprising two stacked α3 trimers, a configuration not previously observed in RO crystal structures. We show that within each trimer, the protomers adopt a head-to-tail configuration typical of ROs. The stacking of the trimers is stabilized by two extended helices, which make the catalytic domain of PDOKF1 larger than that of other characterized ROs. Complexes of PDOKF1 with phthalate and terephthalate revealed that Arg207 and Arg244, two residues on one face of the active site, position these substrates for regiospecific hydroxylation. Consistent with their roles as determinants of substrate specificity, substitution of either residue with alanine yielded variants that did not detectably turnover phthalate. Together, these results provide critical insights into a pollutant-degrading enzyme that has served as a paradigm for ROs and facilitate the engineering of this enzyme for bioremediation and biocatalytic applications.  相似文献   
75.
Huang YW  Kuo CT  Stoner K  Huang TH  Wang LS 《FEBS letters》2011,(13):2129-2136
It is now appreciated that both genetic alteration, e.g. mutations, and aberrant epigenetic changes, e.g. DNA methylation, cause cancer. Epigenetic dysregulation is potentially reversible which makes it attractive as targets for cancer prevention. Synthetic drugs targeting enzymes, e.g. DNA methyltransferase and histone deacetylase, that regulate epigenetic patterns are active in clinical settings. In addition, dietary factors have been suggested to have potential to reverse aberrant epigenetic patterns. Uncovering the human epigenome can lead us to better understand the dynamics of DNA methylation in disease progression which can further assist in cancer prevention.  相似文献   
76.
77.
 The first step in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by Ralstonia eutropha JMP134 is catalyzed by the α-ketoglutarate (α-KG)-dependent dioxygenase TfdA. Previously, EPR and ESEEM studies on inactive Cu(II)-substituted TfdA suggested a mixture of nitrogen/oxygen coordination with two imidazole-like ligands. Differences between the spectra for Cu TfdA and α-KG- and 2,4-D-treated samples were interpreted as a rearrangement of the g–tensor principal axis system. Herein, we report the use of X-ray absorption spectroscopy (XAS) to further characterize the metal coordination environment of Cu TfdA as well as that in the active, wild-type Fe(II) enzyme. The EXAFS data are interpreted in terms of four N/O ligands (two imidazole-like) in the Cu TfdA sample and six N/O ligands (one or two imidazole-like) in the Fe TfdA sample. Addition of α-KG results in no significant structural change in coordination for Cu or Fe TfdA. However, addition of 2,4-D results in a decrease in the number of imidazole ligands in both Cu and Fe TfdA. Since this change is seen both in the Fe and Cu EXAFS, loss of one histidine ligand upon 2,4-D addition best describes the phenomenon. These XAS data clearly demonstrate that changes occur in the atomic environment of the metallocenter upon substrate binding. Received: 3 July 1998 / Accepted: 13 October 1998  相似文献   
78.
The metabolism of the polycyclic aromatic hydrocarbon (PAH) carcinogen benzo[a]pyrene (BaP) was studied using microsomes prepared from the skin of the mouse and rat. Topical application of the polychlorinated biphenyl (PCB) Aroclor 1254 or the PAH 3-methylcholanthrene (3-MC) to the skin of the C57BL/6N and DBA/2N mouse and the Sprague-Dawley rat caused statistically significant enhancement of cutaneous microsomal aryl hydrocarbon hydroxylase (AHH) activity in each animal. PCB was a more potent inducer of the enzyme than was 3-MC. BaP metabolism by skin microsomes from the same animals was assessed using high performance liquid chromatography (HPLC). The skin of untreated animals metabolized BaP into 9,10-, 7,8- and 4,5-dihydrodiols, phenols and quinones. Skin application of PCB caused greater than 16–18-fold enhancement of BaP metabolism in the C57BL/6N mouse and the rat and 2–5-fold enhancement in the DBA/2N mouse. Skin application of 3-MC enhanced BaP metabolism 2–8-fold in the C57BL/6N mouse and 5–10-fold in the rat and had no effect in the DBA/2N mouse. The formation of procarcinogenic metabolite BaP-7, 8-diol was greatly enhanced (4–12-fold) by treatment with the PCB and 3-MC in the tumor susceptible C57BL/6N mouse and in the tumor-resistant neonatal Sprague-Dawley rat. In contrast, the formation of BaP-7,8-diol was either slightly enhanced (2-fold) or unaffected by treatment with the PCB or 3-MC in the tumor-resistant DBA/2N mouse. Our data indicate that neither the patterns of metabolism nor the amount of BaP-7,8-diol formation in the skin are reliable predictors of tumor susceptibility to the PAH in rodent skin.  相似文献   
79.
80.
顺-1,2-二羟基-3,5-环己二烯(简称DHCD)是航天业,电子工业,医药业以及精细化工业上重要的手性化合物,利用重组E.coli JM109(pKST11),采用适时监测发酵过程中全细胞甲苯双加氧酶(Toluene dioxygenase,TDO)活性的方法,研究了发酵生产DHCD工艺中的重要影响因子IPTG以及底物苯的供给方式对DHCD产量的影响,研究结果表明:(1)发酵初期利用IPTG诱导TDO的表达,不利于细胞生长,在对数生长中期(6或8h),采用0.5mmol/L IPTG即可诱导出TDO的最高表达。(2)发酵液中的苯对全细胞甲苯双加氧酶(TDO)的活性有抑制作用,而利用液体石蜡作为缓释剂进行两相法发酵则降低了苯的毒害,明显提高了DHCD的产量。当采用传统的通气供苯方法,DHCD的产量仅有7.5g/L;批式添加液体石蜡与苯的混溶物使DHCD的产量提高到22.6g/L,是通气供苯法的3倍;而采用流加的方式添加液体石蜡与苯的混溶物使DHCD的产量进一步提高到36.8g/L,是通气供苯法的5倍,证明通过发酵工艺的优化可以解决苯的毒害与苯作为反应底物在水相中需要一定浓度之间的矛盾,获得较好的转化结果。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号