首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   1篇
  2023年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2010年   2篇
  2008年   2篇
  2006年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1991年   1篇
  1987年   1篇
  1984年   2篇
  1979年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
11.
The synthesis of human walking is of great interest in biomechanics and biomimetic engineering due to its predictive capabilities and potential applications in clinical biomechanics, rehabilitation engineering and biomimetic robotics. In this paper, the various methods that have been used to synthesize humanwalking are reviewed from an engineering viewpoint. This involves a wide spectrum of approaches, from simple passive walking theories to large-scale computational models integrating the nervous, muscular and skeletal systems. These methods are roughly categorized under four headings: models inspired by the concept of a CPG (Central Pattern Generator), methods based on the principles of control engineering, predictive gait simulation using optimisation, and models inspired by passive walking theory. The shortcomings and advantages of these methods are examined, and future directions are discussed in the context of providing insights into the neural control objectives driving gait and improving the stability of the predicted gaits. Future advancements are likely to be motivated by improved understanding of neural control strategies and the subtle complexities of the musculoskeletal system during human locomotion. It is only a matter of time before predictive gait models become a practical and valuable tool in clinical diagnosis, rehabilitation engineering and robotics.  相似文献   
12.
The results of anthropological research into human evolution have been discussed. Only two research places in CSSR have been engaged with the human evolution: the Department Anthropos in the Moravian Museum in Brno and the Laboratory of Evolutionary Biology of the Czechoslovak Academy of Sciences in Praha. The first of them has been mainly concerned with the paleontological and archeological research reported elsewhere. In the second, the following main questions of human evolution have been discussed: the evolution of bipedal locomotion, the morphological aspects, both qualitative and quantitative ones, the locomotion in other primates and various aspects of their behaviour have been studied. In this connection also various questions of the evolution the of human mind and social consciousness were studied. Special attention has been paid to role of neoteny in the evolution of man and to the import of synergism of the main evolutionary factors. As one of the main results is the principle of sociogenesis viewed and its various aspects. Its top product is human consciousness integrating the most important results of human thinking. Much attention has been paid to its evolution on the basis of the principle of reflection. Also the philosophical and ideological consequences of the sociogenesis as the main trend in the evolution of organisms have been elaborated in detail.  相似文献   
13.
Sprinting and jumping ability are key performance measures that have been widely studied in vertebrates. The vast majority of these studies, however, use methodologies that lack an ecological context by failing to consider the complex habitats in which many animals live. Because successfully navigating obstacles within complex habitats is critical for predator escape, running, climbing, and/or jumping performance are each likely to be exposed to selection. In the present study, we quantify how behavioural strategies and locomotor performance change with increasing obstacle height. Obstacle size had a significant influence on behaviour (e.g. obstacle crossing strategy, intermittent locomotion) and performance (e.g. sprint speed, jump distance). Jump frequency and distance increased with obstacle size, suggesting that it likely evolved because it is more efficient (i.e. it reduces the time and distance required to reach a target position). Jump angle, jump velocity, and approach velocity accounted for 58% of the variation in jump distance on the large obstacle, and 33% on the small obstacle. Although these variables have been shown to significantly influence jump distance in static jumps, they do not appear to be influential in running (dynamic) jumps onto a small obstacle. Because selection operates in simple and complex habitats, future studies should consider quantifying additional measures such as jumping or climbing with respect to the evolution of locomotion performance. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??.  相似文献   
14.
We collected high-resolution plantar pressure distributions of seven bonobos during terrestrial bipedal and quadrupedal locomotion (N = 146). Functional foot length, degree of hallux abduction, and total contact time were determined, and plots, showing pressure as a function of time for six different foot regions, were generated. We also studied five adult humans for comparison (N = 13). Both locomotion types of the bonobo show a large variation in plantar pressure distributions, which could be due to the interference of instantaneous behavior with locomotion and differences in walking speed and body dimensions. The heel and the lateral midfoot typically touch down simultaneously at initial ground contact in bipedal and quadrupedal walking of bonobos, in contrast with the typical heel-strike of human bipedalism. The center of pressure follows a curved course during quadrupedalism, as a consequence of the medial weight transfer during mid-stance. Bipedal locomotion of bonobos is characterized by a more plantar positioning of the feet and by a shorter contact time than during quadrupedal walking, according to a smaller stride and step length at a higher frequency. We observed a varus position of the foot with an abducted hallux, which likely possesses an important sustaining and stabilizing function during terrestrial locomotion.  相似文献   
15.
16.
17.
In primates it is useful to distinguish three basic types of bipedal posture: (1) agonial, with extended hips and knees as in modern humans, (2) monogonial, with flexed hips but extended knees. and (3) digonial, with flexed hips and knees as in pongids. Early hominids retained an ancestral, forwardly inclined posture of the neck and head. Therefore the body posture of australopithednes must have differed from that in modem man, in which the centre of gravity of the head can be aligned with that of the body, other major centra of gravity, and important axes of rotation in a single frontal plane. It is suggested that in australopithednes the gravitational tilt of the head was counterbalanced by bent hips in association with hyperextended knees (monogonial posture). In australopithecines the increase in brain weight would have counteracted an improvement in the balance of the head. After the neck had assumed a more vertical posture as a consequence of shortening of the face, selection for an improved balance system in the bipedal posture favoured an increase in the weight of the postcondylar portion of the head, accentuated by selection for a posterior shift of the superior nuchal line in order to minimise the force of the nuchal muscles. At this stage the evolutionary increase in brain weight may have been largely a by-product of the process towards perfecting the bipedal posture. When the centre of gravity of the head had first become aligned with that of the body, the conditions of balance of the head had become favourable for a dramatic increase of brain size, as a result of selection for greater learning and storage capacity of the brain.  相似文献   
18.
Locomotion arises from the complex and coordinated function of limb muscles. Yet muscle function is dynamic over the course of a single stride and between strides for animals moving at different speeds or on variable terrain. While it is clear that motor unit recruitment can vary between and within muscles, we know little about how work is distributed within and between muscles under in vivo conditions. Here we show that the lateral gastrocnemius (LG) of helmeted guinea fowl (Numida meleagris) performs considerably more work than its synergist, the medial gastrocnemius (MG) and that the proximal region of the MG (pMG) performs more work than the distal region (dMG). Positive work done by the LG was approximately twice that of the proximal MG when the birds walked at 0.5 ms -1, and four times when running at 2.0 m s-1. This is probably due to different moments at the knee, as well as differences in motor unit recruitment. The dMG performed less work than the pMG because its apparent dynamic stiffness was greater, and because it exhibited a greater recruitment of slow-twitch fibres. The greater compliance of the pMG leads to increased stretch of its fascicles at the onset of force, further enhancing force production. Our results demonstrate the capacity for functional diversity between and within muscle synergists, which increases with changes in gait and speed.  相似文献   
19.
A host of ecological, anatomical, and physiological selective pressures are hypothesized to have played a role in the evolution of hominid bipedalism. A referential model, based on the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus), was used to test through experimental manipulation four hypotheses on the evolution of hominid bipedalism. The introduction of food piles (Carry hypothesis) increased locomotor bipedality in both species. Neither the introduction of branches (Display hypothesis) nor the construction of visual barriers (Vigilance hypothesis) altered bipedality in either species. Introduction of raised foraging structures (Forage hypothesis) increased postural bipedality in chimpanzees. These experimental manipulations provided support for carrying of portable objects and foraging on elevated food-items as plausible mechanisms that shaped bipedalism in hominids.  相似文献   
20.
Of the living apes, the chimpanzee (Pan troglodytes) and bonobo (Pan paniscus) are often presented as possible models for the evolution of hominid bipedalism. Bipedality in matched pairs of captive bonobos and chimpanzees was analyzed to test hypotheses for the evolution of bipedalism, derived from a direct referential model. There was no overall species difference in rates of bipedal positional behavior, either postural or locomotory. The hominoid species differed in the function or use of bipedality, with bonobos showing more bipedality for carrying and vigilance, and chimpanzees showing more bipedality for display.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号