首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   705篇
  免费   74篇
  国内免费   56篇
  2023年   15篇
  2022年   26篇
  2021年   33篇
  2020年   23篇
  2019年   36篇
  2018年   37篇
  2017年   35篇
  2016年   30篇
  2015年   32篇
  2014年   44篇
  2013年   51篇
  2012年   34篇
  2011年   39篇
  2010年   32篇
  2009年   28篇
  2008年   49篇
  2007年   33篇
  2006年   22篇
  2005年   18篇
  2004年   24篇
  2003年   35篇
  2002年   24篇
  2001年   18篇
  2000年   28篇
  1999年   17篇
  1998年   11篇
  1997年   8篇
  1996年   12篇
  1995年   5篇
  1994年   15篇
  1993年   5篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有835条查询结果,搜索用时 531 毫秒
21.
Roberto Rizzo 《Plant biosystems》2013,147(4-6):995-1003
Abstract

Some aspects of both the chemical and physico-chemical properties of gelling algal polysaccharides are reviewed in connection with their technological and biotechnological uses. In fact, besides the traditional applications, which are mainly in the field of food industry, recent sophisticated biotechnological manipulations opened the way for the exploitation of these molecules for very advanced applications like the formulation of micro spheres for cell incubation. Some aspects of the structure of alginate gel beads used for cell immobilisation are illustrated.  相似文献   
22.
This paper reports on a survey of human biotechnology organizations in Australia. The study provides insights into the nature, use and practices involved with human genetic databanking in the country. The survey was conducted at a time when databanks were becoming increasingly important to an expanding genomics industry, and while the nature and extent of industry regulation was being debated. The data revealed a surprising level of confusion and inconsistency in the interpretation of terminology and in ethical practice, even among those organizations subject to the relevant government ethics guidelines. It is argued that despite the extensive level of public consultation, recommendations for reform and actual reform in the intervening years, human genetic databanking remains an under-regulated sector of the human biotechnology industry in Australia, and at least as far as the private sector is concerned, will remain so in the foreseeable future.  相似文献   
23.
The study's objective is to survey the attitudes of Chinese people living in Hong Kong toward genomic science and technology (GST) and their ethical and social implications. Using a 24-item questionnaire, 877 Cantonese-speaking residents between age 18 and 64 with minimum high school education are interviewed by telephone. Multiple regression analysis identifies education level as the most important demographic variable. Overall, respondents have mild agreement with genetic determinism and the use of GST for disease prevention but not for non-therapeutic genetic enhancement and production of “genetically modified” crops or meat. Respondents strongly believe that GST tampers with nature and resources should be used to solve other healthcare problems first. Respondents also show little concern that personal genetic information may be abused by their employers or schools and have only a minimal willingness to share personal genetic information with their family members.  相似文献   
24.
During evolution, sponges (Porifera) have honed the genetic toolbox and biosynthetic mechanisms for the fabrication of siliceous skeletal components (spicules). Spicules carry a protein scaffold embedded within biogenic silica (biosilica) and feature an amazing range of optical, structural, and mechanical properties. Thus, it is tempting to explore the low-energy synthetic pathways of spiculogenesis for the fabrication of innovative hybrid materials. In this synthetic biology approach, the uptake of multifunctional nonbiogenic nanoparticles (fluorescent, superparamagnetic) by spicule-forming cells of bioreactor-cultivated sponge primmorphs provides access to spiculogenesis. The ingested nanoparticles were detected within intracellular vesicles resembling silicasomes (silica-rich cellular compartments) and as cytosolic clusters where they lent primmorphs fluorescent/magnetic properties. During spiculogenesis, the nanoparticles initially formed an incomplete layer around juvenile, intracellular spicules. In the mature, extracellular spicules the nanoparticles were densely arranged as a surface layer that rendered the resulting composite fluorescent and magnetic. By branching off the conventional route of solid-state materials synthesis under harsh conditions, a new pathway has been opened to a versatile platform that allows adding functionalities to growing spicules as templates in living cells, using nonbiogenic nanoscale building blocks with multiple functionalities. The magnet-assisted alignment renders this composite with its fluorescent/magnetic properties potentially suitable for application in biooptoelectronics and microelectronics (e.g., microscale on-chip waveguides for applications of optical detection and sensing).  相似文献   
25.
As an important bulk chemical, benzoic acid is currently manufactured from nonrenewable feedstocks under harsh conditions. Although there are natural pathways for biosynthesis of benzoic acid, they are often inefficient and subjected to complex regulation. Here we develop a nonnatural enzyme cascade to efficiently produce benzoic acid from styrene or biogenic L -phenylalanine under mild conditions. By using a modular approach, two whole-cell catalysts Escherichia coli LZ305 and LZ325 are engineered for coexpressing seven and nine enzymes for production of 133–146 mM benzoic acid (16.2–17.8 g/Laq) with 88–97% conversion via seven- and nine-step cascade biotransformation of styrene and L -phenylalanine, respectively. The seven-step cascade represents a formal high-yielding biocatalytic oxidative cleavage of styrene, and the nine-step cascade showcases the high efficiency of extended nonnatural enzyme cascades. Moreover, to achieve benzoic acid production directly from low-cost renewable glycerol, a novel coupled fermentation-biotransformation process was developed by integration of fermentative production of L -phenylalanine with in situ biotransformation to give 63–70 mM benzoic acid (7.6–8.6 g/Laq), which is around 20 times higher than the reported value via a natural pathway. The coupled fermentation-biotransformation process could be generally applicable to microbial production of growth-inhibitory or toxic chemicals in high concentrations.  相似文献   
26.
Hypertension is a major and highly prevalent risk factor for various diseases. Among the most frequently prescribed antihypertensive first-line drugs are synthetic angiotensin I-converting enzyme inhibitors (ACEI). However, since  their use in hypertension therapy has been linked to various side effects, interest in the application of food-derived ACEI peptides (ACEIp) as antihypertensive agents is rapidly growing. Although promising, the industrial production of ACEIp through conventional methods such as chemical synthesis or enzymatic hydrolysis of food proteins has been proven troublesome. We here provide an overview of current antihypertensive therapeutics, focusing on ACEI, and illustrate how biotechnology and bioengineering can overcome the limitations of ACEIp large-scale production. Latest advances in ACEIp research and current genetic engineering-based strategies for heterologous production of ACEIp (and precursors) are also presented. Cloning approaches include tandem repeats of single ACEIp, ACEIp fusion to proteins/polypeptides, joining multivariate ACEIp into bioactive polypeptides, and producing ACEIp-containing modified plant storage proteins. Although bacteria have been privileged ACEIp heterologous hosts, particularly when testing for new genetic engineering strategies, plants and microalgae-based platforms are now emerging. Besides being generally safer, cost-effective and scalable, these “pharming” platforms can perform therelevant posttranslational modifications and produce (and eventually deliver) biologically active protein/peptide-based antihypertensive medicines.  相似文献   
27.
Heavey P 《Bioethics》2013,27(1):36-47
Some religious believers may see synthetic biology as usurping God's creative role. The Catholic Church has yet to issue a formal teaching on the field (though it has issued some informal statements in response to Craig Venter's development of a 'synthetic' cell). In this paper I examine the likely reaction of the Catholic Magisterium to synthetic biology in its entirety. I begin by examining the Church's teaching role, from its own viewpoint, to set the necessary backround and context for the discussion that follows. I then describe the Church's attitude to science, and particularly to biotechnology. From this I derive a likely Catholic theology of synthetic biology. The Church's teachings on scientific and biotech research show that it is likely to have a generally positive disposition to synbio, if it and its products can be acceptably safe. Proper evaluation of, and protection against, risk will be a significant factor in determining the morality of the research. If the risks can be minimized through regulation or other means, then the Church is likely to be supportive. The Church will also critique the social and legal environment in which the research is done, evaluating issues such as the patenting of scientific discoveries and of life.  相似文献   
28.
In the past few years, the signal transduction of the plant hormone abscisic acid (ABA) has been studied extensively and has revealed an unanticipated complex. ABA, characterized as an intracellular messenger, has been proven to act a critical function at the heart of a signaling network operation. It has been found that ABA plays an important role in improving plant tolerance to cold, as well as triggering leaf senescence for years. In addition, there have been many reports suggesting that the signaling pathways for leaf senescence and plant defense responses may overlap. Therefore, the objective was to review what is known about the involvement of ABA signaling in plant responses to cold stress and regulation of leaf senescence. An overview about how ABA is integrated into sugars and reactive oxygen species signaling pathways, to regulate plant cold tolerance and leaf senescence, is provided. These roles can provide important implications for biotechnologically improving plant cold tolerance.  相似文献   
29.
Abstract

In both prokaryotes and eukaryotes, including plants, phosphorus (P) is an essential nutrient that is involved in various biochemical processes, such as lipid metabolism and the biosynthesis of nucleic acids and cell membranes. P also contributes to cellular signaling cascades by function as mediators of signal transduction and it also serves as a vital energy source for a wide range of biological functions. Due to its intensive use in agriculture, P resources have become limited. Therefore, it is critically important in the future to develop scientific strategies that aim to increase P use efficiency and P recycling. In addition, the biologically available soluble form of P for uptake (phosphate; Pi) is readily washed out of topsoil layers, resulting in serious environmental pollution. In addition to this environmental concern, the wash out of Pi from topsoil necessitates a continuous Pi supply to maintain adequate levels of fertilization, making the situation worse. As a coping mechanism to P stress, plants are known to undergo drastic cellular changes in metabolism, physiology, hormonal balance and gene expression. Understanding these molecular, physiological and biochemical responses developed by plants will play a vital role in improving agronomic practices, resource conservation and environmental protection as well as serving as a foundation for the development of biotechnological strategies, which aim to improve P use efficiency in crops. In this review, we will discuss a variety of plant responses to low P conditions and various molecular mechanisms that regulate these responses. In addition, we also discuss the implication of this knowledge for the development of plant biotechnological applications.  相似文献   
30.
Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号