首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   47篇
  国内免费   8篇
  2023年   11篇
  2022年   3篇
  2021年   8篇
  2020年   10篇
  2019年   21篇
  2018年   13篇
  2017年   14篇
  2016年   14篇
  2015年   19篇
  2014年   8篇
  2013年   19篇
  2012年   14篇
  2011年   1篇
  2010年   7篇
  2009年   8篇
  2008年   5篇
  2007年   9篇
  2006年   11篇
  2005年   13篇
  2004年   5篇
  2003年   8篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   2篇
  1990年   4篇
  1989年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
排序方式: 共有255条查询结果,搜索用时 15 毫秒
121.
Climate change could profoundly affect the status of agricultural insect pests. Several approaches have been used to predict how the temperature and precipitation changes could modify the abundances, distributions or status of insect pests. In this article it is demonstrated how the use of simple models, such as Ricker’s classic equation, including a mechanistic representation of the influence of exogenous forces may improve our predictive capacity of the dynamic behaviour of insect populations. Using data from classical experiments in population ecology, we evaluate how temperature and humidity influence the density of two stored grain insect pest, Tribolium confusum and Callosobruchus chinensis, and then, using the A2 and B2 scenarios proposed by the Intergovernmental Panel on Climate Change and the previous modelling, we develop predictions over the future pest status of T. confusum along South America austral region, and specifically for eight cities in the continental Chilean territory. Tribolium confusum and C. chinensis show qualitatively different responses to the exogenous forcing of temperature and humidity, respectively. Our simulations predict a change in the equilibrium density of T. confusum from 10 to 14% under the moderate B2 scenario and 12 to 22% under the extreme A2 scenario to the period, 2071–2100. Both results imply a severe change in the pest status of this species in the southern region. This study illustrates how the use of theoretically based models may improve our predictive capacity. This approach provides an opportunity to examine the link between invasive species and climate change and how new suitable habitat may become available for species whose niche space is limited in some degree by climatic conditions. The use of different scenarios allows us to examine the sensitivity of the predictions, and to improve the communication with the general public and decision‐makers; a key aspect in integrated pest management.  相似文献   
122.
Concerns over energy shortages and global climate change have stimulated developments toward renewable energy. Biofuels have been developed to replace fossil fuels to reduce the emissions of greenhouse gases and other environmental impacts. However, food security and water scarcity are other growing concerns, and the increased production of biofuels may increase these problems. This study focuses on whether biofuel development would stress China's water resources. Cassava‐based fuel ethanol and sweet sorghum‐based fuel ethanol are the focus of this study because they are the most typical nongrain biofuels in China. The spatial distribution of the total water requirement of fuel ethanol over its life cycle process was simulated using a biophysical biogeochemical model and marginal land as one of the types of input data for the model to avoid impacts on food security. The total water requirement of fuel ethanol was then compared with the spatial distribution of water resources, and the influence of the development of fuel ethanol on water resources at the pixel and river basin region scales was analyzed. The result showed that the total water requirement of fuel ethanol ranges from 37.81 to 862.29 mm. However, considering water resource restrictions, not all of the marginal land is suitable for the development of fuel ethanol. Approximately 0.664 million km2 of marginal land is suitable for the development of fuel ethanol, most of which is located in the south of China, where water resources are plentiful. For these areas, the value of fuel ethanol's water footprint ranges from 0.05 to 11.90 m3 MJ?1. From the water point of view, Liaoning province, Guizhou province, Anhui province and Hunan province can be given priority for the development of fuel ethanol.  相似文献   
123.
The boundaries between terrestrial and aquatic ecosystems, known as critical transition zones (CTZ), are dynamic interfaces for fluxes of water, sediment, solutes, and gases. Moreover, they often support unique or diverse biotas. Soils, especially those of riparian zones, have not been recognized as CTZ even though they play a critical role in regulating the hydrologic pathways of infiltration and leaching, or runoff and erosion, which can cumulatively affect biogeochemical processes and human livelihoods at landscape scales. In this review, we show how the processes that regulate hydrologic fluxes across and through soil CTZ are influenced by the activities of soil biota. Our message is fourfold. First, there are a variety of ways in which soil biodiversity, in terms of richness and dominance, can influence hydrological pathways in soil and thus the transfer of materials from terrestrial to aquatic ecosystems. Second, the influence of soil organisms on these hydrological pathways is very much interlinked with other environmental, soil biophysical, and vegetation factors that operate at different spatial and temporal scales. Third, we propose that the influence of soil biodiversity on hydrological pathways is most apparent (or identifiable), relative to other factors, in situations that lead to the dominance of certain organisms, such as larger fauna. Fourth, soils are buffered against environmental change by biophysical properties that have developed over long periods of time. Therefore, the effects of changes in soil biodiversity on hydrological processes at the ecosystem scale might be delayed and become most apparent in the long term. Received 25 February 2000; accepted 11 December 2000.  相似文献   
124.
伊藤牡丹‘巴茨拉’是适合反季节盆花生产的优良品种。为探讨春节异地牡丹促成栽培中水溶肥调控盆栽‘巴茨拉’开花效果,在茎伸长初期用0、0.8、1.2和1.6 g·L^(-1)均衡型水溶肥(N-P-K=20-20-20+TE)进行灌根处理,观察测定水溶肥对植株生长发育、开花质量及相关生理生化指标的影响。结果表明:(1)水溶肥灌根能显著促进盆栽‘巴茨拉’各部器官的生长和养分积累。(2)随水溶肥浓度的增加,叶片叶绿素、可溶性蛋白质和可溶性糖含量以及花枝长度、粗度和花蕾直径随之增大,各器官中氮素和钾素营养水平亦呈现增加趋势;中高浓度(1.2 g·L^(-1)和1.6 g·L^(-1))水溶肥条件下,花蕾直径分别比对照显著增大了4.4%和7.7%(P<0.05),使花促成栽培时间缩短了4.45 d和2.65 d,最佳观赏期延长了5.08 d和1.70 d。(3)中浓度水溶肥处理盛开期花朵最大,花朵直径和单株成花率分别比对照提高了16.0%和13.5%(P<0.05),并显著提高了花瓣中类黄酮、类胡萝卜素含量及色彩黄度(P<0.05)。研究发现,适宜浓度的水溶肥能够显著提高‘巴茨拉’促成栽培过程中枝叶花的协调性,使用水溶肥应成为‘巴茨拉’盆花生产的基础管理措施;反季节栽培伊藤牡丹‘巴茨拉’建议使用1.2 g·L^(-1)均衡型水溶肥进行灌根。  相似文献   
125.
Destabilising a biological system through periodic or stochastic forcing can lead to significant changes in system behaviour. Forcing can bring about coexistence when previously there was exclusion; it can excite massive system response through resonance, it can offset the negative effect of apparent competition and it can change the conditions under which the system can be invaded. Our main focus is on the invasion properties of continuous time models under periodic forcing. We show that invasion is highly sensitive to the strength, period, phase, shape and configuration of the forcing components. This complexity can be of great advantage if some of the forcing components are anthropogenic in origin. They can be turned into instruments of control to achieve specific objectives in ecology and disease management, for example. Culling, vaccination and resource regulation are considered. A general analysis is presented, based on the leading Lyapunov exponent criterion for invasion. For unstructured invaders, a formula for this exponent can typically be written down from the model equations. Whether forcing hinders or encourages invasion depends on two factors: the covariances between invader parameters and resident populations and the shifts in average resident population levels brought about by the forcing. The invasion dynamics of a structured invader are much more complicated but an analytic solution can be obtained in quadratic approximation for moderate forcing strength. The general theory is illustrated by a range of models drawn from ecology and epidemiology. The relationship between periodic and stochastic forcing is also considered.  相似文献   
126.
Many problems in pure and applied ecology require the quantification of above‐ and below‐ground microclimates. Here I describe a data set of hourly microclimates for the Australian continent, simulated from the years 1990 to 2017 across a grid of 1893 locations approx. 60 km apart. The data were generated with the NicheMapR microclimate model, driven by 0.05° gridded daily meteorological forcing data (air temperature, wind speed, humidity, cloud cover, rainfall), 0.025° elevation and 0.008° soil texture data. The above‐ground microclimate variables include horizontal plane solar radiation, solar zenith angle, sky temperature (from which down‐welling longwave radiation can be computed), air temperature, relative humidity and wind speed at 1 and 120 cm height, and snow depth. The below‐ground variables include soil temperature, pore humidity, soil moisture and soil water potential for 0, 2.5, 5, 10, 15, 20, 30, 50, 100 and 200 cm below‐ground. The computations are for four shade levels (0%, 50%, 70% and 90%). The data set can be used for a wide variety of applications, including the computation of heat and water budgets of organisms, the potential for vegetation growth, and the computation of stress and growth indices. The use of daily forcing data also allows assessments of the consequences of extreme events including heat waves. Example applications are provided for computing plant growth potential, grasshopper egg development, lizard body temperature and mammalian energy and water requirements.  相似文献   
127.
Force plays critical roles in cell adhesion and mechano-signaling, partially by regulating the dissociation rate, i.e., off-rate, of receptor-ligand bonds. However, the mechanism of such regulation still remains elusive. As a controversial topic of the field, when measuring the “off-rate vs. force” relation of the same molecular system, different dynamic force spectroscopy (DFS) assays (namely, force-clamp and force-ramp assays) often yield contradictive results. Such discrepancies hurdled our further understanding of molecular binding, and casted doubt on the existing theoretical models. In this work, we used a live-cell DFS technique, biomembrane force probe, to measure the single-bond dissociation in three receptor-ligand systems which respectively have important functions in vascular and immune systems: human platelet GPIbα-VWF, mouse T cell receptor-OVA peptide:MHC, and mouse platelet integrin αIIbβ3-fibrinogen. Using force-clamp and force-ramp assays in parallel, we identified that the force loading disrupted the stability of molecular bonds in a rate-dependent manner. This disruptive effect was achieved by the transitioning of bonds between two dissociation states: faster force loading induces more bonds to adopt the fast-dissociating state (and less to adopt the slow-dissociating state). Based on this mechanism, a new biophysical model of bond dissociation was established which took into account the effects of both force magnitude and loading rate. Remarkably, this model reconciled the results from the two assays in all three molecular systems under study. Our discoveries provided a new paradigm for understanding how force regulates receptor-ligand interactions and a guideline for the proper use of DFS technologies. Furthermore, our work highlighted the opportunity of using different DFS assays to answer specific biological questions in the field of cell adhesion and mechano-signaling  相似文献   
128.
Reports of killer whales (Orcinus orca) preying on large whales have been relatively rare, and the ecological significance of these attacks is controversial. Here we report on numerous observations of killer whales preying on neonate humpback whales (Megaptera novaeangliae) off Western Australia (WA) based on reports we compiled and our own observations. Attacking killer whales included at least 19 individuals from three stable social groupings in a highly connected local population; 22 separate attacks with known outcomes resulted in at least 14 (64%) kills of humpback calves. We satellite‐tagged an adult female killer whale and followed her group on the water for 20.3 h over six separate days. During that time, they attacked eight humpback calves, and from the seven known outcomes, at least three calves (43%) were killed. Overall, our observations suggest that humpback calves are a predictable, plentiful, and readily taken prey source for killer whales and scavenging sharks off WA for at least 5 mo/yr. Humpback “escorts” vigorously assisted mothers in protecting their calves from attacking killer whales (and a white shark, Carcharodon carcharias). This expands the purported role of escorts in humpback whale social interactions, although it is not clear how this behavior is adaptive for the escorts.  相似文献   
129.
Early cysteine labeled (E(C)) proteins are plant metallothioneins, which were first identified in wheat embryos and are thought to be seed-specific. An exhaustive analysis of expressed sequence tag (EST) entries reveals that homologs are expressed in embryos of both classes of flowering plants (monocotyledons and dicotyledons), but also occur in conifers (gymnosperms) and seed-free spike moss (lycophyta). Mass spectrometric and elemental analysis results indicate that, contrary to the widely propagated number of five, E(C) binds predominantly six zinc ions in at least two zinc-thiolate clusters. 1H and 111Cd NMR experiments suggest that, in contrast to the majority of previously characterized metallothioneins, two conserved histidine residues participate in metal binding. The collected data is consistent with the presence of clusters unprecedented in metallothioneins so far. This novel cluster composition is accompanied by metal-binding properties that are substantially different from other metallothioneins; thus wheat E(C) binds zinc less strongly than either mammalian or cyanobacterial MTs. The unique biochemical properties of wheat E(C) render it ideally suited for a role in zinc donation to nascent proteins during seed development, a role that has been suggested based on the fact that E(C) is induced by the plant hormone abscisic acid, but not by heavy metals. Our results provide a step further toward developing a property/function relationship for metallothioneins.  相似文献   
130.
It is widely accepted that clear water phases constitute a regular stage in the seasonal succession of plankton in dimictic lakes and reservoirs (i.e. PEG Model). The occurrence of such a phenomenon in Mediterranean shallow lakes is characterised by a marked interannual variability, which makes it difficult to establish reliable predictions on the dynamics and functioning of plankton in these ecosystems. In the present paper we analyse the factors influencing the occurrence of the clear water phases in the two shallow lakes of the Albufera of Adra, a coastal wetland region of south-eastern Spain: Lake Honda and Lake Nueva. Despite their geographical proximity, both lakes depicted large hydrological and limnological differences. Lake Honda is an epigenic and recharge lake that is strongly influenced by the hydrological conditions in its watershed, while Lake Nueva can be classified as a hypogenic and discharge lake and, as such, is less affected by the hydrological regime. In contrast, the morphometry, exposure and fetch of Lake Nueva make this ecosystem especially sensitive to wind forcing. Clear water phases in these shallow lakes were linked with periods of low thermal stability and the dominance of small-edible algae in the phytoplankton community, both of which allowed a Daphnia magna population to grow up and induce the algae collapse by grazing. In Lake Honda, those conditions were met during the spring of 2002 under the influence of intense rainfall-events, while in Lake Nueva the clear water phase was induced in the spring of 2003 by the occurrence of strong and frequent wind events. In both lakes, a relatively high water column thermal stability and the abundance of cyanobacteria early in the spring prevented the development of the Daphnia magna population and the occurrence of the clear water phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号