首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1870篇
  免费   122篇
  国内免费   83篇
  2024年   9篇
  2023年   51篇
  2022年   57篇
  2021年   104篇
  2020年   130篇
  2019年   209篇
  2018年   101篇
  2017年   71篇
  2016年   60篇
  2015年   62篇
  2014年   66篇
  2013年   250篇
  2012年   61篇
  2011年   62篇
  2010年   44篇
  2009年   50篇
  2008年   50篇
  2007年   49篇
  2006年   50篇
  2005年   55篇
  2004年   40篇
  2003年   35篇
  2002年   26篇
  2001年   29篇
  2000年   30篇
  1999年   20篇
  1998年   28篇
  1997年   30篇
  1996年   24篇
  1995年   21篇
  1994年   19篇
  1993年   17篇
  1992年   14篇
  1991年   7篇
  1990年   6篇
  1989年   16篇
  1988年   10篇
  1987年   6篇
  1986年   9篇
  1985年   8篇
  1984年   11篇
  1983年   9篇
  1982年   7篇
  1981年   8篇
  1980年   8篇
  1979年   13篇
  1978年   5篇
  1977年   11篇
  1974年   6篇
  1973年   5篇
排序方式: 共有2075条查询结果,搜索用时 268 毫秒
11.
12.
Light control of extractable nitrate reductase activity in higher plants   总被引:3,自引:0,他引:3  
Light regulation of extractable nitrate reductase (NR) activity of higher plants is complicated by: 1) involvement of several photoreceptors, 2) differences in the relative importance of the several photoreceptors among species and among developmental stages of the same species, 3) two types of effects – alteration of activity of existing NR and influences on de novo synthesis of NR, and 4) differing forms of NR within the same species. The interrelationships of all of these factors are not clear. It may be that each system will have to be understood separately before a general model can be developed. Immunochemical quantification of NR from systems exposed to varied light regimes may enhance our understanding of this area. Currently few general conclusions can be made; however, we think that the following statements are true or are usually true: (1) Phytochrome influences extractable NR activity by the low irradiance response and high irradiance response in etiolated tissues. (2) In de-etiolated tissues phytochrome can influence NR activity decay at the end of a light period by the low irradiance response. (3) The phytochrome equilibrium or the absolute level of Pfr influences extractable NR activity in green tissues under white light. (4) Blue light influences extractable NR activity through phytochrome and another, unknown, blue light-absorbing pigment. Flavins may be involved in vitro in reactivation of inactivated NR. (5) Photosynthesis does not directly influence the induction of the forms of NR that require substrate and light for induction. (6) In some tissues there appears to be a close link between nitrite-reducing and nitrate-reducing capabilities. (7) Much circumstantial evidence from kinetic and protein-synthesis-inhibitor studies and the only available immunochemical data indicate that light induces de novo synthesis of NR, resulting in increased extractable activity.  相似文献   
13.
The fatty acid, sterol and chlorophyll composition of the calcified, unicellular alga Thoracosphaera heimii (Lohmann) Kamptner are reported. The presence of 4,23,24-termethyl-5α-cholest-22E-en-3β-ol (dinosterol), 4,23,24-trimethyl-5α-cholest-22E-en-3-one (dinosterone) and the predominance of C18, C20 and C22 unsaturated fatty acids, including the acid 18:5ω3, indicates that T. heimii is a dinoflagellate. The fatty acid: sterol ratio (1.3), is typical of dinoflagellates. The geochemical significance of dinosterone, the high relative concentration of 4-desmethyl-5α-stanols and the role of 23-methyl-5α-cholest-22E-en-3β-ol in the biosynthesis of dinosterol in T. heimii are also discussed.  相似文献   
14.
Phylogenetic and physiological methods were used to study the evolution of the opsin gene family in Drosophila. A phylogeny based on DNA sequences from 13 opsin genes including representatives from the two major subgenera of Drosophila shows six major, well-supported clades: The blue opsin clade includes all of the Rhl and Rh2 genes and is separated into two distinct subclades of Rhl sequences and Rh2 sequences; the ultraviolet opsin clade includes all Rh3 and Rh4 genes and bifurcates into separate Rh3 and Rh4 clades. The duplications that generated this gene family most likely took place before the evolution of the subgenera Drosophila and Sophophora and their component species groups. Numerous changes have occurred in these genes since the duplications, including the loss and/or gain of introns in the different genes and even within the Rhl and Rh4 clades. Despite these changes, the spectral sensitivity of each of the opsins has remained remarkably fixed in a sample of four species representing two species groups in each of the two subgenera. All of the strains that were investigated had R1-6 (Rhl) spectral sensitivity curves that peaked at or near 480 nm, R7 (Rh3 and Rh4) peaks in the ultraviolet range, and ocellar (Rh2) peaks near 420 nm. Each of the four gene clades on the phylogeny exhibits very conservative patterns of amino acid replacement in domains of the protein thought to influence spectral sen sitivity, reflecting strong constraints on the spectrum of light visible to Drosophila.  相似文献   
15.
We report here on the characterization and isolation of two ecotypes of Chlorella vulgaris Beyerinck that coexist in wastewater reservoirs. One ecotype (C1) contains high amounts of chlorophyll b, is capable of autotrophic growth, and can utilize only a few organic solutes for growth. The second ecotype (C2) contains low amounts of chlorophyll b, requires vitamin B12, and can support its growth with a broad range of organic compounds. Of the two ecotypes, the latter showed slower growth rates when light was the sole source of energy. Cells of C2-type Chlorella attained higher photosynthetic activities than C1-type cells at saturating irradiances. However, their low chlorophyll b content and lower light utilization efficiency suggest that C2-type Chlorella contains relatively low amounts of light-harvesting antennae, a disadvantage in severely light-limited ecosystems like wastewater reservoirs. We hypothesize that the two Chlorella types coexist by adopting different lifestyles: C1-type cells rely largely on their photosynthetic potential for energy conservation and growth, whereas C2-type cells may exploit their heterotrophic properties for this purpose.  相似文献   
16.
Iron propagation cages were settled on sand and/or rock beds in coastal areas of Hokkaido. The cage was oxidized by dissolved oxygen and the released Fe(II) diffused into the seawater around the cage. Fe(II) concentrations in the range of 10–50 nM were detected within a 20-m distance around the cage. For comparison, in the Japan Sea, the total iron concentration is less than 2 nM.Laminaria japonica was grown in an indoor semi-continuous culture system. The critical Fe level for maintaining maximum growth, and the subsistence Fe level for survival were measured. The concentrations obtained were 14–21 and 8 g Fe g–1 tissue, respectively. Iron found inL. japonica growing on rocks and/or rock beds in the Japan Sea was close to the subsistence level. However, the Fe level inL. japonica on the cage in the Japan Sea was considerably higher. The concentrations of chlorophyll-a and fucoxanthin collected from the cage were significantly higher for sporophytes, demonstrating that iron is a very important element for the growth of seaweeds.  相似文献   
17.
The water fern Azolla pinnata R. Br. was fumigated for 1 week with either 25, 50 or 100 nl 1−1 SO2. The symbiosis of Azolla with Anabaena azollae (spp.) was severely damaged by atmospheric SO2 even at concentrations as low as 25 nl 1−1, with significant reductions in growth, reduction of C2H2, NH3 assimilation, protein synthesis, and heterocyst development. These disturbances appear to be mainly responsible for the extreme sensitivity of this fern to atmospheric SO2. Changes in violaxanthin/antheraxanthin and epoxy-lutein/lutein ratios also indicate that free radical products are induced by atmospheric SO2. These results suggest that the Azolla-Anabaena symbiotic system is a very responsive and reliable lower plant model to study the detailed effects of total sulphur deposition upon the balances between various important plant metabolic processes.  相似文献   
18.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   
19.
The goatfish Upeneus tragula undergoes an abrupt metamorphosis at settlement when the pelagic larvae begin a reef-associated benthic mode of life. A microspectrophotometric investigation of the retinal visual pigments was carried out on fish prior to, during, and following settlement. It was found that the visual pigment in the long wavelength-absorbing member of the double cones in the dorsal retina changed rapidly from a rhodopsin with a wavelength of maximum absorption (max) of 580 nm to that of 530 nm. The second member of the double cones always had a rhodopsin with the max absorbing at shorter wavelengths. Prior to settlement the average for this class of cones was 487 nm whereas during and immediately following the settlement period the max recorded from individual outer segments was found to vary between 480 nm and 520 nm, with two possible classes of cone absorbance emerging within this range. These two classes of absorbance had average max values of 487 and 515 nm. The average max of the paired cone classes in one larger wild-settled fish were found to be at 506 nm and 530 nm. No change was detected in the max of the single cones or the rods which were always found to have a max of about 400 nm and 498 nm respectively. The loss of the redabsorbing pigment occurred over the same time scale as the metamorphosis of morphological features associated with the settlement process. It is thought that the loss of this visual pigment is associated with the change in light environment of the fishes as they leave the surface waters to begin a benthic mode of life in deeper water.Abbreviations AIMS Australian Institute of Marine Science - ANOVA Analysis of variance - IR infra-red - max wavelength of maximum absorption - MSP microspectrophotometer - NA numerical aperture - SL standard length  相似文献   
20.
When there is a predictive biomarker, enrichment can focus the clinical trial on a benefiting subpopulation. We describe a two-stage enrichment design, in which the first stage is designed to efficiently estimate a threshold and the second stage is a “phase III-like” trial on the enriched population. The goal of this paper is to explore design issues: sample size in Stages 1 and 2, and re-estimation of the Stage 2 sample size following Stage 1. By treating these as separate trials, we can gain insight into how the predictive nature of the biomarker specifically impacts the sample size. We also show that failure to adequately estimate the threshold can have disastrous consequences in the second stage. While any bivariate model could be used, we assume a continuous outcome and continuous biomarker, described by a bivariate normal model. The correlation coefficient between the outcome and biomarker is the key to understanding the behavior of the design, both for predictive and prognostic biomarkers. Through a series of simulations we illustrate the impact of model misspecification, consequences of poor threshold estimation, and requisite sample sizes that depend on the predictive nature of the biomarker. Such insight should be helpful in understanding and designing enrichment trials.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号